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Abstract—MapReduce is emerging as a generic parallel pro-
gramming paradigm for large clusters of machines. This trend
combined with the growing need to run machine learning (ML)
algorithms on massive datasets has led to an increased interest
in implementing ML algorithms on MapReduce. However, the
cost of implementing a large class of ML algorithms as low-level
MapReduce jobs on varying data and machine cluster sizes can
be prohibitive. In this paper, we propose SystemML in which
ML algorithms are expressed in a higher-level language and
are compiled and executed in a MapReduce environment. This
higher-level language exposes several constructs including linear
algebra primitives that constitute key building blocks for a broad
class of supervised and unsupervised ML algorithms. The algo-
rithms expressed in SystemML are compiled and optimized into
a set of MapReduce jobs that can run on a cluster of machines.
We describe and empirically evaluate a number of optimization
strategies for efficiently executing these algorithms on Hadoop, an
open-source MapReduce implementation. We report an extensive
performance evaluation on three ML algorithms on varying data
and cluster sizes.

I. INTRODUCTION

Recently, there has been a growing need for scalable im-

plementations of machine learning (ML) algorithms on very

large datasets (ranging from 100s of GBs to TBs of data 1).

This requirement is driven by applications such as social

media analytics, web-search, computational advertising and

recommender systems. Previous attempts at building scalable

machine learning algorithms have largely been hand-tuned

implementations on specialized hardware/parallel architec-

tures [1], or as noted in [2], clever methods to parallelize

individual learning algorithms on a cluster of machines [3],

[4], [5]. The recent popularity of MapReduce [6] as a generic

parallel programming model has invoked significant inter-

est in implementing scalable versions of ML algorithms on

MapReduce. These algorithms have been implemented over

multiple MapReduce architectures [7], [8], [9] ranging from

multicores [2] to proprietary [10], [11], [12] and open source

implementations [13].

Much of this work reverts back to hand-tuned imple-

mentations of specific algorithms on MapReduce [10], [11].

One notable exception is [2] where the authors abstract one

common operation – “summation form” – and present a recipe

1This refers to the size of the numeric features on which the algorithm
operates. The raw data from which the numeric features are extracted may be
larger by 1 to 2 orders of magnitude.

to map instances of this operation onto MapReduce2. Several

algorithms are then expressed using multiple instances of the

summation form mapped appropriately to MapReduce jobs.

This approach still leaves two fundamental problems to be

addressed:

• Each individual MapReduce job in an ML algorithm has

to be hand-coded.

• For better performance, the actual execution plan for the

same ML algorithm has to be hand-tuned for different

input and cluster sizes.

Example 1: The practical implications of the above two

fundamental drawbacks are illustrated using this example.

Algorithm 1 shows a popular ML algorithm called Gaus-

sian Non-Negative Matrix Factorization (GNMF [14]) that

has applications in document clustering, topic modeling and

computer vision. In the context of topic modeling, V is a

d×w matrix with d documents and w words. Each cell of V

represents the frequency of a word appearing in a document.

GNMF tries to find the model of t topics encoded in W
(d × t) and H (t × w) matrices, such that V ≈ WH . As

seen in the algorithm3, this is an iterative algorithm consisting

of two major steps in a while loop, each step consisting of

multiple matrix operations. XT denotes the transpose of a

matrix X , XY denotes the multiplication of two matrices X

and Y, X ∗ Y and X/Y denote cell-wise multiplication and

division respectively (see Table I).

Algorithm 1 Gaussian Non-Negative Matrix Factorization

1: V = read(“in/V”); //read input matrix V
2: W = read(“in/W”); //read initial values of W
3: H = read(“in/H”); //read initial values of H
4: max iteration = 20;
5: i = 0;
6: while i < max iteration do
7: H = H ∗ (WTV / WTWH); //update H
8: W = W ∗ (V HT / WHHT ); //update W
9: i = i+ 1;

10: end while
11: write(W,“out/W”); //write result W
12: write(H,“out/H”); //write result H

2A class of ML algorithms compute certain global statistics which can be
expressed as a summation of local statistics over individual data points. In
MapReduce, local statistics can be computed by mappers and then aggregated
by reducers to produce the global statistics.

3To simplify the exposition, we leave out straightforward expressions for
objective function and convergence criteria in the algorithm description.
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Fig. 1. RMM: Replication based Matrix Multiplication

Consider the expression WHHT in Step 8 of Algorithm 1.

This expression can be evaluated in one of two orders,

od1: (WH)HT and od2: W (HHT ). At first glance, picking

the right order and performing this computation may seem

straightforward, but the fact that matrix multiplication itself

can be accomplished in multiple ways complicates matters.

Figure 1 and Figure 2 show two alternative MapReduce

plans for matrix multiplication (details of the two plans will

be discussed in Section IV). The RMM plan in Figure 1 im-

plements a replication-based strategy in a single MapReduce

job, while the CPMM plan in Figure 2 implements a cross-

product strategy that requires 2 MapReduce jobs. The choice

of RMM vs CPMM is dictated by the characteristics of the

matrices involved in the multiplication. To compute WHHT ,

we have to choose from a total of 8 plans: first choose the

order of evaluation, od1 or od2, and for the chosen order

choose from RMM or CPMM for each matrix multiplication.

Instantiating the dimensionalities of the matrices reveals the

need to choose one plan over another. In the context of topic

modeling, the number of topics t is much smaller than the

number of documents d and the number of words w. As a

result, od1 will never be selected as the evaluation order, since

WH produces a d × w large intermediate matrix whereas

HHT in od2 results in a t× t small matrix. When d = 107,

w = 105 and t = 10, H is of medium size and the result of

HHT is tiny. The replication based approach RMM performs

very well for both matrix multiplications. The best plan with

od2 is to use RMM for HHT followed by another RMM

for the pre-multiplication with W. Empirically, this plan is

1.5 times faster than the second best plan of using CPMM

followed by RMM. However, when w is changed to 5× 107,

size of H increases 500 times. The overhead of replicating H
and HT makes RMM inferior to CPMM for the computation

of HHT . On the other hand, the result of HHT remains

to be a tiny matrix, so the best plan to compute the pre-

multiplication with W is still RMM. A cost model and a

detailed discussion on choosing between CPMM and RMM

will be provided in Section IV.

As shown above, the choice of a good execution strategy

depends significantly on data characteristics. Pushing this

burden on programmers will have serious implications in terms

of scaling both development and execution time. This paper

takes a step towards addressing this problem.
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Fig. 2. CPMM: Cross Product based Matrix Multiplication

Problem Statement: Build a scalable declarative machine

learning system that

• exposes a declarative higher-level language for writing

ML algorithms, thereby freeing the user from low-level

implementation details and performance-tuning tasks.

• provides performance that scales to very large datasets

and is comparable to hand-tuned implementations of

individual algorithms.

• covers a large class of ML and statistical algorithms

whose computational cores are linear algebra primitives

and iterative numerical optimization procedures. These

include (but are not restricted to) linear statistical models,

PCA, PageRank, Matrix Factorizations, and so on.

The remainder of the paper is organized as follows. In

Section II, we present SystemML, in which ML algorithms

are expressed in a higher-level language subsequently com-

piled and automatically parallelized to execute in Hadoop, an

open source implementation of MapReduce. We then describe

the individual components of SystemML in Section III. We

discuss the role of cost based optimization by showing two

alternative execution plans for the expensive matrix multiplica-

tion operation. We then present extensive experimental results

(Section V) to demonstrate the scalability of SystemML and

the effectiveness of the optimizations performed at various

stages.

II. SYSTEMML OVERVIEW

We now give an overview of SystemML. Figure 3(a) shows

the overall architecture of SystemML that consists of four

components.

Language: Algorithms in SystemML are written in a high-

level language called Declarative Machine learning Language

(DML). DML exposes mathematical and linear algebra prim-

itives on matrices that are natural to express a large class

of ML algorithms, including linear models, PCA, PageRank,

NMF etc. In addition, DML supports control constructs such

as while and for to write complex iterative algorithms. Through

program analysis, SystemML breaks a DML script into smaller



TABLE I
EXAMPLE OPERATORS IN DML: xij , yij AND zij ARE CELLS IN MATRICES X , Y AND Z , RESPECTIVELY.

Algorithm 1 DML Statement Semantics HOP Notation LOP Notation

Z = X ∗ Y Z=X*Y cell-wise multiplication: zij = xij ∗ yij b(∗) : X,Y group → binary(∗)
Z = X/Y Z=X/Y cell-wise division: zij = xij/yij b(/) : X,Y group → binary(/)
Z = XY Z=X%*%Y matrix multiplication: zij =

∑
k xik ∗ ykj ab(

∑
, ∗) : X,Y (mmrj) or (mmcj → group → aggregate(

∑
))

Z = XT Z=t(X) transpose: zij = xji r(T ) : X transform(t)
Z=log(X) cell-wise logarithm: zij = log(xij) u(log) : X unary(log)
Z=rowSum(X) row-wise sums: zi =

∑
j xij au(

∑
, row) : X transform(row) → group → aggregate(

∑
)

units called statement blocks. Each statement block, separately,

is optimized and executed by subsequent components.

High-Level Operator Component (HOP): The HOP com-

ponent analyzes all the operations within a statement block

and chooses from multiple high-level execution plans. A

plan is represented in a HOP-Dag, a directed acyclic graph

of basic operations (called hops) over matrices and scalars.

Optimizations considered in this component include algebraic

rewrites, selection of the physical representation for interme-

diate matrices, and cost-based optimizations.

Low-Level Operator Component (LOP): The LOP compo-

nent translates the high-level execution plans provided by the

HOP component into low-level physical plans on MapReduce,

represented as LOP-Dags. Each low-level operator (lop) in a

LOP-Dag operates on key-value pairs or scalars. The LOP-Dag

is then compiled into one or more MapReduce jobs by packing

multiple lops into MapReduce jobs to keep the number of data

scans small. We refer to this strategy as piggybacking.

Runtime: The runtime component executes the low-level

plans obtained from the LOP component on Hadoop. The

main execution engine in SystemML is a generic MapReduce

job, which can be instructed to execute multiple lops inside

it. A control module orchestrates the execution of different

instances of the generic MapReduce job. Multiple optimiza-

tions are performed in the runtime component; e.g., execution

plans for individual lops are decided dynamically based on

data characteristics such as sparsity of the input matrices.

Figure 3(b) shows how a single DML statement

A=B*(C/D) is processed in SystemML. The language ex-

pression consists of untyped variables and is translated into a

HOP-Dag consisting of a cell-wise division hop and a cell-

wise multiplication hop on matrices. A lower-level execution

plan is then generated for this expression as shown in the LOP-

Dag. Here, the Cell-Wise Binary Divide hop is translated into

two lops – a Group lop that sorts key-value pairs to align

the cells from C and D; followed by the lop Binary Divide

on Each Group. Finally, the entire LOP-Dag is translated into

a single MapReduce job, where (a) the mapper reads three

inputs, (b) all groupings are performed implicitly between

the mapper and the reducer and (c) the reducer performs the

division followed by the multiplication.

III. SYSTEMML COMPONENTS

A. Declarative Machine learning Language (DML)

DML is a declarative language whose syntax closely

resembles the syntax of R4 [16]. To enable more system

4R is prototypical for a larger class of such languages including Matlab [15]

generated optimization, DML does not provide all the

flexibility available in R. However, this loss in flexibility

results largely in loss in programming convenience and does

not significantly impact the class of ML algorithms that are

expressible in DML. The GNMF algorithm (Algorithm 1)

is expressed in DML syntax in Script 1. We explain DML

constructs using this example.

Script 1: GNMF
1: V=readMM("in/V", rows=1e8, cols=1e5, nnzs=1e10);

2: W=readMM("in/W", rows=1e8, cols=10);

3: H=readMM("in/H", rows=10, cols=1e5);

4: max_iteration=20;

5: i=0;

6: while(i<max_iteration){
7: H=H*(t(W)%*%V)/(t(W)%*%W%*%H);

8: W=W*(V%*%t(H))/(W%*%H%*%t(H));

9: i=i+1;}
10:writeMM(W, "out/W");

11:writeMM(H, "out/H");

Data Types: DML supports two main data types: matrices

and scalars 5. Scalar data types supported are integer, double,

string and logical. The cells in a matrix may consist of integer,

double, string or logical values.

Statements: A DML program consists of a sequence of

statements, with the default computation semantics being

sequential evaluation of the individual statements.

The following constructs are currently supported in DML.

Input/Output: ReadMM and WriteMM statements are pro-

vided for respectively reading and writing matrices from and

to files. Optionally, in the ReadMM statement, the user can

provide additional properties of the matrix such as sparsity

(number of non-zero entries or nnzs).

Control Structures: Control structures supported in DML

include the while statement, for statement and if statement.

Steps 6-9 in Script 1 show an example while statement.

Assignment: An assignment statement consists of an expres-

sion and the result of which is assigned to a variable - e.g.,

Steps 7 ,8 and 9 in Script 1. Note that the assignment can be

to a scalar or a matrix.

Table I lists several example operators allowed in expres-

sions in DML. The arithmetic operators +,−, ∗, / extend

naturally to matrices where the semantics is such that the

operator is applied to the corresponding cells. For instance,

the expression Z = X ∗ Y will multiply the values in the

corresponding cells in X and Y , and populate the appropriate

cell in Z with the result. Several internal functions, specific to

particular data types, are supported – e.g., rowSum computes

5We treat vectors as a special case of matrices.
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1. V = readMM (“in/V“, rows = 1e8, cols =1e5, nnzs =1e10);

2. W = readMM (“in/W”, rows = 1e8, cols = 10);

3. H = readMM (“in/H”, rows = 10, cols = 1e5);

4. max_iteration = 20;

5. i = 0;

6.  while (i < max_iteration) {

7.    H = H * ( t(W) %*% V ) /   ( t(W) %*% W %*% H );

8.    W = W *  ( V %*% t(H)  )  / ( W %*% H %*% t(H) );

9.     i = i + 1 ; }

10. writeMM (W, “result/W”);

11. writeMM (H, "result/H");

Statement Block SB1

Statement Block SB2

Statement Block SB3

Live Variables In
Matrix : W, H

Live Variables Out
Matrix : W, H, V
Scalar :  i, max_iteration

Live Variables In
Matrix : W, H, V
Scalar :  i, max_iteration

Live Variables Out
Matrix : W, H, V
Scalar :  i, max_iteration

Live Variables In : None

Live Variables Out : None

H refers to output of Step 7 

and is a 10 x 105 matrix

W refers to output of 

Step 2 or Step 8 of 

previous iteration and is 

a 108 x 10 matrix

(c)

Fig. 3. (a) SystemML Architecture, (b) Evaluation of A=B*(C/D): conceptually, each key-value pair contains the index and the value of a cell in the matrix,
(c) Program Analysis

the sum of every row in a matrix and returns a column matrix

(i.e., a vector), while t(·) computes the transpose of a matrix.

DML also allows users to define their own functions using

the syntax “function (arglist) body”. Here, the arglist consists

of a set of formal input and output arguments and the body is

a group of valid DML statements.

Comparison with R programming language: As pointed out

before, we have made some choices in the design of DML to

better enable system optimizations. For example, DML does

not support object oriented features, advanced data types (such

as lists and arrays) and advanced function support (such as

accessing variables in the caller function and further up in the

call-stack). Besides these advanced features for programming

convenience, R also supports extensive graphical procedures

that are clearly beyond the scope of DML.

Program Analysis: We now describe the sequence of steps a

DML script goes through to generate a parsed representation.

Figure 3(c) shows the result of program analysis for Script 1.

Type Assignment: The first step is to assign data types

to each variable in the DML script. For instance, ReadMM

statements (Steps 1-3) are used to type V, W and H as matrices,

while Assignment statements (Steps 4-5) are used to identify

max iteration and i as scalar variables.

Statement Block Identification: As control constructs (such

as while) and functions break the sequential flow of a DML

program, they naturally divide the program into statement

blocks. Each statement block consists of consecutive Assign-

ment, ReadMM and WriteMM statements, as the operations

involved in these statements can be collectively optimized.

Figure 3(c) illustrates our example algorithm broken down into

three statement blocks (SB1, SB2 and SB3).

Live Variable Analysis: The goal of this step is twofold:

(a) Connect each variable use with the immediately preceding

write(s) for that variable across different evaluation paths. For

example, variable W used in Step 7 refers to the output of

Step 2 for the first iteration of the loop and Step 8 for second

iteration onwards. (b) For each statement block, identify the

variables that will be required from previous statement blocks

(Live Variables In) and the variables that will be output by the

current statement block (Live Variables Out). The results of

live variable analysis are shown in Figure 3(c).

B. High-Level Operator Component (HOP)

The HOP component takes the parsed representation of a

statement block as input, and produces a HOP-Dag represent-

ing the data flow.

Description of hops: Each hop in the HOP-Dag has one

or more input(s), performs an operation or transformation,

and produces output that is consumed by one or more sub-

sequent hops. Table II lists some example hops supported

in SystemML along with their semantics6. In addition, the

instantiation of hops from the DML parsed representation

is exemplified in Table I. Consider the matrix multiplication

Z=X%*%Y as an instance, an AggregateBinary hop is instan-

tiated with the binary operation ∗ and the aggregate operation∑
. The semantics of this hop instance, denoted by ab(

∑
, ∗),

is to compute, ∀i, j,
∑

k(xi,k ∗ yk,j).
Construction of HOP-Dag: The computation in each state-

ment block is represented as one HOP-Dag 7. Figure 4(a)

shows the HOP-Dag for the body of the while loop statement

block in Figure 3(c) constructed using the hops in Table II.

Note how multiple statements in a statement block have been

combined into a single HOP-Dag. The HOP-Dag need not be

a connected graph, as shown in Figure 4(a).

The computation t(W)%*%W in the statement block is

represented using four hops – a data(r):W hop that reads

W is fed into a Reorg hop r(T ) to perform the matrix

transposition, which is then fed, along with the data(r):W
hop, into an AggregateBinary hop ab(

∑
, ∗) to perform the

matrix multiplication.

The grayed data(r) hops represent the live-in variables for

matrices W , H , and V , and the scalar i at the beginning of

an iteration8. The grayed data(w) hops represent the live-out

6Table II describes the semantics of hops in terms of matrices. Semantics
of hops for scalars are similar in spirit.

7Statement blocks for control structures such as while loops have additional
HOP-Dags, e.g. for representing predicates.

8The max iteration variable is used in the HOP-Dag for the while loop
predicate.



TABLE II
EXAMPLE HOPS IN SYSTEMML: xij , yij ARE CELLS IN MATRICES X , Y , RESPECTIVELY.

HOP Type Notation Semantics Example in Table I

Binary b(op) : X,Y for each xij and yij , perform op(xij , yij), where op is ∗,+,−, / etc. b(∗) : X,Y
Unary u(op) : X for each xij , perform op(xij), where op is log, sin etc. u(log) : X

AggregateUnary au(aggop, dimension) : X
apply aggop for the cells in dimension, where aggop is

∑
,
∏

etc, and
dimension is row (row wise), col (column wise) or all (the whole
matrix).

au(
∑

, row) : X

AggregateBinary ab(aggop, op) : X,Y
for each i, j, perform aggop({op(xik, ykj)|∀k}), where op is
∗,+,−, / etc, and aggop is

∑
,
∏

etc.
ab(

∑
, ∗) : X,Y

Reorg r(op) : X reorganize elements in a matrix, such as transpose (op = T ). r(T ) : X
Data data(op) : X read (op = r) or write (op = w) a matrix.

ab(Σ,*)

r(T)r (T)

b(*)

b(/)

data(r):H

ab(Σ,*)ab(Σ,*)

data(r): V r(T)

data(r):W
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Fig. 4. HOP-Dag, LOP-Dag and Runtime of the while Loop Body in Figure 3(c)

variables at the end of an iteration that need to be passed onto

the next iteration. These data hops – which are transient –

implicitly connect HOP-Dags of different statement blocks by

mapping the transient data(w) hops (sinks) of one statement

block to the transient data(r) hops (sources) of the next

statement block, or the next iteration of the while loop.

C. Low-Level Operator Component (LOP)

The LOP component translates HOP-Dags into correspond-

ing low-level physical execution plans (or LOP-Dags). In this

section, we detail the low-level operators (lop) that describe

individual operations over key-value pairs and show how a

LOP-Dag is constructed from a HOP-Dag. We also present a

greedy piggybacking heuristic for packaging lops into small

number of MapReduce jobs.

Description of lops: Lops represent basic operations in a

MapReduce environment. Each lop takes one or more sets

of key-value pairs as input and generates one set of key-value

pairs as output that can be consumed by one or more lops.

Example lops9 are provided in Table III.

Construction of LOP-Dags: A HOP-Dag is processed in a

bottom-up fashion to generate the corresponding LOP-Dag by

translating each hop into one or more lops. Figure 5 describes

the translation of a Binary hop to the corresponding lops for

the expression C/D (Figure 3(b)). At the bottom, each of the

two data lops returns one set of key-value pairs for the input

matrices, conceptually, one entry for each cell in the individual

9Lops over scalars are omitted in the interest of space.

matrices. (In practice, as will be described in Section III-D1,

data lop typically returns multiple cells for each key where

the number of cells is determined by an appropriate blocking

strategy.) A group then groups or sorts the key-value pairs

from the two inputs based on their key. Each resulting group

is then passed on to a binary lop to perform the division of

the corresponding cell-values. Other example translations of

hops to lops are provided in Table I.

Figure 4(b) shows the generated LOP-Dag for the “H

Assignment” part of the HOP-Dag in Figure 4(a). Note that

the AggregateBinary hop for matrix multiplication can be

translated into different sequences of lops (see the last column

of the 3rd row in Table I). In our example of Figure 4(b),

mmcj → group → aggregate(
∑

) is chosen for t(W)%*%V

and t(W)%*%W, and mmrj is chosen for multiplying the result

of (t(W)%*%W) with H.

Packaging a LOP-Dag into MapReduce jobs: Translating

every lop to a MapReduce job, though straightforward, will

result in multiple scans of input data and intermediate results.

If, however, multiple lops can be packaged into a single

MapReduce job, the resulting reduction in scans may result

in an improvement in efficiency. Packing multiple lops into

a single MapReduce job requires clear understanding of the

following two properties of lops:

Location: whether the lop can be performed in Map, Re-

duce, either or both phases. Note that the execution of certain

lops, such as group, spans both Map and Reduce phases.

Key Characteristics: whether the input keys are required
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Fig. 5. Translating hop to lop for expression C/D from Figure 3(b)

to be grouped, the output keys produced are grouped, and

whether the lop generates different output keys.

These properties for the individual lops are summarized

in Table III. Algorithm 2 describes the greedy piggybacking

algorithm that packs the lops in a LOP-Dag into a small

number of MapReduce jobs. The nodes in a given LOP-Dag

are first topologically sorted, and then partitioned into multiple

lists based on their execution location property. Note that

the nodes within each list are in topologically sorted order.

The approach then iteratively assigns the lops to one or more

MapReduce job(s). During each iteration, it allocates a new

MapReduce job and assigns lops first to the Map phase, then

assigns lops that span the Map and Reduce phases, and finally

assigns lops to the Reduce phase. This assignment is carried

out by invoking the method addNodesByLocation.

Lop nodes with execution locations of Map or

MapOrReduce can be assigned to the Map phase provided

their descendants in the LOP-Dag have already been assigned.

Note that the descendants of a given lop p are the ones that

have a directed path to p, and they appear prior to p in

a topological sort. When no more lops can be added to

the Map phase, we proceed to add lops that span the Map

and Reduce phases, ensuring that another descendant with

execution location MapAndReduce will not be assigned

to the same job. Finally, lops with the execution locations

of MapOrReduce and Reduce are directly added to the

Reduce phase of the job provided their descendants have

already been assigned. Group lops (with execution location

MapAndReduce) can be added to the reduce phase provided

the same MapReduce job has been assigned a descendant

group lop and that none of the intermediate lops between the

two group lops alter the keys. For example, consider the five

lops shown as dotted boxes in Figure 4(b). The first group

lop is assigned to span Map and Reduce phases of the job.

Remaining two group lops are executed in the Reduce phase

because the aggr.(+) and binary(/) lops do not alter the

keys. Therefore, the entire LOP-Dag is packed into just five

MapReduce jobs (see Figure 4(c)). The job number is shown

next to each lop in Figure 4(b). Overall runtime complexity

of our piggybacking strategy is quadratic in LOP-Dag size.

While Pig [17] also makes an effort to pack multiple operators

into MapReduce jobs, their approach is not readily applicable

for complex linear algebraic operations.

D. Runtime

There are three main considerations in the runtime compo-

nent of SystemML: key-value representation of matrices, an

MR runtime to execute individual LOP-Dags over MapReduce,

Algorithm 2 Piggybacking : Packing lops that can be evalu-

ated together in a single MapReduce job

1: Input: LOP-Dag

2: Output: A set of MapReduce Jobs(MRJobs)

3: [NMap, NMapOrRed, NMapAndRed, NRed] = TopologicalSort(LOP-Dag);

4: while (Nodes in LOP-Dag remain to be assigned) do

5: Job ← create a new MapReduce job;

6: addNodesByLocation(NMap ∪NMapOrRed, Map, Job);

7: addNodesByLocation(NMapAndRed , MapAndReduce, Job);

8: addNodesByLocation(NMapOrRed ∪NMapAndRed ∪NRed, Reduce, Job);

9: add Job to MRJobs;

10: end while

11:
12: Method: addNodesByLocation ( S, loc, Job )

13: while (true) do

14: Z ← φ

15: while ( S is not empty ) do

16: n ← S.next()

17: if (n is not yet assigned and all descendants of n have been assigned) then

18: if (loc is Map ) then

19: add n to Z

20: else if (loc is MapAndReduce ) then

21: add n to Z if n does not have any descendant lop in Z and Job whose

location is MapAndReduce

22: else if (loc is Reduce) then

23: add n to Z if n is not a group lop

24: if n is a group lop: add n to Z only if n has a descendant group lop

in Z or Job & none of the lops between these two group lops alter

keys

25: end if

26: end if

27: end while

28: break if Z is empty

29: add Z to Job.Map, Job.MapAndReduce, or Job.Reduce, based on loc

30: end while
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and a control module to orchestrate the execution of all the

MapReduce jobs for a DML script.

1) Matrices as Key-Value Pairs: SystemML partitions ma-

trices into blocks (using a blocking operation) and exploits

local sparsity within a block to reduce the number of key-

value pairs when representing matrices.

Blocking: A matrix is partitioned into smaller rectangular sub-

matrices called blocks. Each block is represented as a key-

value pair with the key denoting the block id and the value

carrying all the cell values in the block. Figure 6 shows a

matrix partitioned into 2 × 2 blocks. Note that cell, row and

column representations are special cases of blocks. Varying

the block sizes results in a trade-off between the number of

key-value pairs flowing through MapReduce and the degree of

parallelism in the system.

Local Sparsity: Local Sparsity refers to the sparsity of an

individual block, i.e. the fraction of non-zero values in the

block. To achieve storage efficiency, the actual layout of the

values in a block is decided based upon its local sparsity. A

parameter Tsparse provides a threshold to choose between a



TABLE III
EXAMPLE LOPS IN SYSTEMML: {〈(i, j), xij〉} IS THE CONCEPTUAL KEY-VALUE REPRESENTATION OF MATRIX X

LOP Type Description Execution Location Key Characteristics

data input data source or output data sink, in key value pairs {〈(i, j), xij〉} Map or Reduce none

unary operate on each value with an optional scalar, {〈(i, j), xij〉}, s Z⇒ {〈(i, j), op(xij , s)〉} Map or Reduce none

transform transform each key, {〈(i, j), xij〉} Z⇒ {〈trans(i, j), xij〉} Map or Reduce keys changed

group groups values by the key, {〈(i, j), xij〉}, {〈(i, j), yij〉}... Z⇒ {〈(i, j), {xij , yij ...}〉} Map and Reduce output keys grouped

binary operate on two values with the same key, {〈(i, j), {xij , yij}〉} Z⇒ {〈(i, j), op(xij , yij)〉} Reduce input keys grouped

aggregate aggregate all the values with the same key, {〈(i, j), values〉} Z⇒ {〈(i, j), agg(values)〉} Reduce input keys grouped

mmcj cross product computation in the CPMM matrix multiplication, Map and Reduce none
{〈(i, k), xik〉}, {〈(k, j), ykj〉} Z⇒ {〈(i, j), op(xik, ykj)〉}

mmrj RMM matrix multiplication, Map and Reduce none
{〈(i, k), xik〉}, {〈(k, j), ykj〉} Z⇒ {〈(i, j), agg({op(xik, ykj)})〉}

sparse and a dense representation on a per-block basis. For

example with Tsparse = 0.3 in Figure 6, the block A1,2 (local

sparsity 0.25) is treated as sparse, and hence, only its non-

zero cells are stored. In comparison, the block A1,1 with local

sparsity 0.75 is considered dense and all its cell values are

stored in a one-dimensional array.

Dynamic Block-level Operations Based on Local Sparsity:

When employing blocking, all matrix operations are translated

into operations on blocks at the lowest level. Local sparsity

information is also used to dynamically decide on the appro-

priate execution of per-block operations at runtime. For every

block-level operation, there are separate execution plans to

account for the fact that individual blocks may be dense or

sparse. Suppose we want to perform matrix multiplication on

two individual blocks. The actual algorithm chosen for this

operation is based on the local sparsity of the two input blocks.

If both blocks are dense, the runtime chooses an algorithm

that cycles through every cell in both blocks. If, however,

one or both of the blocks is sparse, the runtime chooses an

algorithm that operates only on the non-zero cells from the

sparse block(s).

2) Generic MapReduce Job (G-MR): G-MR is a generic

MapReduce job and is the main execution engine in Sys-

temML. It is instantiated by the piggybacking algorithm

(Algorithm 2) with the runtime instructions associated with

one or more lops. The job is then executed in the MapReduce

environment. As an example, consider the MapReduce job

marked 1 in Figure 4(c). It contains instructions to execute

three different lops – a data; a transform; and a mmcj (the

lops are also marked 1 in Figure 4(b)). The instructions for

the first two lops are executed in the Map phase of the job

whereas the instruction for the third lop is executed both in

Map and Reduce phases.

3) Control Module: The control module is responsible for

orchestrating the execution of the instantiated MapReduce jobs

for a DML script. Operations performed in the control module

include scalar computations, such as arithmetic operations and

predicate evaluations, and metadata operations such as deletion

of intermediate results while executing the DML script.

IV. MATRIX MULTIPLICATION ALGORITHMS

For the expensive matrix multiplication operation, Sys-

temML currently supports two alternative execution plans:

RMM and CPMM. For CPMM, we describe a runtime opti-

mization using a local aggregator that enables partial aggrega-

tion in the reducer. Using a cost model, we detail a comparison

of the two plans under different data characteristics.

A. RMM and CPMM

Consider two matrices A and B represented in blocked

format, with Mb ×Kb blocks in A and Kb ×Nb blocks in B.

The matrix multiplication can be written in blocked format as

follows: Ci,j =
∑

k Ai,kBk,j , i < Mb, k < Kb, j < Nb.

RMM: The replication based matrix multiplication strategy,

as illustrated in Figure 1, requires only one MapReduce job.

The LOP-Dag for this execution plan contains a single mmrj

lop. Each reducer in this strategy is responsible for computing

the final value for one or more blocks in the resulting matrix

C. In order to compute one result block Ci,j , the reducer must

obtain all required blocks from input matrices, i.e., Ai,k and

Bk,j , ∀ k. Since each block in A and B can be used to produce

multiple result blocks in C, they need to be replicated. For

example, Ai,k is used in computing the blocks Ci,js, 0 ≤ j <
Nb.

CPMM: Figure 2 demonstrates the cross product based al-

gorithm for matrix multiplication. CPMM is represented in a

LOP-Dag with three lops mmcj → group → aggregate(
∑

),
and requires 2 MapReduce jobs for execution. The mapper of

the first MapReduce job reads the two input matrices A and

B and groups input blocks Ai,ks and Bk,js by the common

key k. The reducer performs a cross product to compute

P k
i,j = Ai,kBk,j . In the second MapReduce job the mapper

reads the results from the previous MapReduce job and groups

all the P k
i,js by the key (i, j). Finally, in the Reduce phase,

the aggregate lop computes Ci,j =
∑

k P
k
i,j .

B. Local Aggregator for CPMM

In CPMM, the first MapReduce job outputs P k
i,j for 1 ≤ k ≤

Kb. When Kb is larger than the number of available reducers

r, each reducer may process multiple cross products. Suppose

a reducer applies cross products on k = k′ and k = k′′, then

both P k′

i,j = Ai,k′Bk′,j and P k′′

i,j = Ai,k′′Bk′′,j are computed

in the same reducer. From the description of CPMM, we know

that the second MapReduce job aggregates the output of the

first job as Ci,j =
∑

k P
k
i,j . Instead of outputting P k′

i,j and

P k′′

i,j separately, it is more efficient to aggregate the partial

results within the reducer. Note that this local aggregation is



applicable only for mmcj. This operation is similar in spirit to

the combiner [6] in MapReduce, the major difference being

that here partial aggregation is being performed in the reducer.

There is still the operational difficulty that the size of the

partial aggregation may be too large to fit in memory. We have,

therefore, implemented a disk-based local aggregator that uses

an in-memory buffer pool. CPMM always generates the result

blocks in a sorted order, so that partial aggregation only incurs

sequential IOs with an LRU buffer replacement policy. One

aspect worth noting is that no matter how many cross products

get assigned to a single reducer the result size is bounded by

the size of matrix C, denoted as |C|. We demonstrate in Sec-

tion V-C, that this seemingly simple optimization significantly

improves the performance of CPMM.

C. RMM vs CPMM

We start with a simple cost model for the two algorithms.

Empirically, we found that the distributed file system (DFS) IO

and network costs were dominant factors in the running time,

and consequently we focus on these costs in our analysis.

In RMM, the mappers replicate each block of A and B, Nb

and Mb times respectively. As a result, Nb|A|+Mb|B| data is

shuffled in the MapReduce job. Therefore, the cost of RMM

can be derived as cost(RMM) = shuffle(Nb|A| + Mb|B|) +
IOdfs(|A|+ |B|+ |C|).

In CPMM, in the first job, mappers read blocks of A and

B, and send them to reducers. So, the amount of data shuffled

is |A|+ |B|. The reducers perform cross products for each k
and apply a local aggregator to partially aggregate the results

across different values of k within a reducer. The result size

produced by each reducer is bounded by |C|. When there are

r reducers in the job, the amount of data written to DFS

is bounded by r|C|. This data is then read into the second

MapReduce job, shuffled and then fed into the reducers to

produce the final result. So, the total cost of CPMM is bounded

by cost(CPMM) ≤ shuffle(|A| + |B| + r|C|) + IOdfs(|A| +
|B|+ |C|+ 2r|C|).

For data of the same size, shuffle is a more expensive

operation than IOdfs as it involves network overhead, local

file system IO and external sorting.

The cost models discussed above provide a guideline for

choosing the appropriate algorithm for a particular matrix

multiplication. When A and B are both very large, CPMM is

likely to perform better, since the shuffle overhead of RMM

is prohibitive. On the other hand, if one matrix, say A, is

small enough to fit in one block (Mb = Kb = 1), the cost of

RMM becomes shuffle(Nb|A|+ |B|)+ IOdfs(|A|+ |B|+ |C|).
Essentially, RMM now partitions the large matrix B and

broadcasts the small matrix A to every reducer. In this case,

RMM is likely to perform better than CPMM. In Section V-C,

we will experimentally compare the performance of CPMM

and RMM for different input data characteristics.

V. EXPERIMENTS

The goals of our experimentation are to study scalability

under conditions of varying data and Hadoop cluster sizes,

and the effectiveness of optimizations in SystemML. For this

purpose, we chose GNMF for which similar studies have

been conducted recently [10], thereby enabling meaningful

comparisons. Since SystemML is architected to enable a large

class of ML algorithms, we also study 2 other popular ML

algorithms, namely linear regression and PageRank.

A. Experimental Setup

The experiments were conducted with Hadoop 0.20 [9] on

two different clusters:

• 40-core cluster: The cluster uses 5 local machines as

worker nodes. Each machine has 8 cores with hyper-

threading enabled, 32 GB RAM and 500 GB storage.

We set each node to run 15 concurrent mappers and 10

concurrent reducers.

• 100-core EC2 cluster: The EC2 cluster has 100 worker

nodes. Each node is an EC2 small instance with 1

compute unit, 1.7 GB memory and 160 GB storage. Each

node is set to run 2 mappers and 1 reducer concurrently.

The datasets are synthetic, and for given dimensionality

and sparsity, the data generator creates random matrices with

uniformly distributed non-zero cells. A fixed matrix block

size (c.f. Section III-D1) of 1000 × 1000 is used for all the

experiments, except for the matrix blocking experiments in

Section V-C. For the local aggregator used in CPMM, we use

an in-memory buffer pool of size 900 MB on the 40-core

cluster and 500 MB on the 100-core EC2 cluster.

B. Scalability

We use GNMF shown in Script 1 as a running example

to demonstrate scalability on both the 40-core cluster and the

100-core cluster.

The input matrix V is a sparse matrix with d rows and

w columns. We fix w to be 100,000 and vary d. We set the

sparsity of V to be 0.001, thus each row has 100 non-zero

entries on average. The goal of GNMF algorithm is to compute

dense matrices W of size d × t and H of size t × w, where

V ≈ WH . t is set to 10 (As described in Section I in the

context of topic modeling, t is the number of topics.). Table IV

lists the characteristics of V, W and H used in our setup.

Baseline single machine comparison: As a baseline for com-

paring SystemML, we first run GNMF using 64-bit version of

R on a single machine with 64 GB memory. Figure 7(a) shows

the execution times for one iteration of the algorithm with

increasing sizes of V. For relatively small sizes of V, R runs

very efficiently as the data fits in memory. However, when the

number of rows in V increases to 10 million (1 billion non-

zeros in V), R runs out of memory, while SystemML continues

to scale.

Comparison against best known published result: [10] in-

troduces a hand-coded MapReduce implementation of GNMF.

We use this MapReduce implementation as a baseline to

evaluate the efficiency of the execution plan generated by

SystemML as well as study the performance overhead of our
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Fig. 7. Scalability of GNMF: (a) increasing data size on 40-core cluster, (b) increasing data size on 100-core cluster, (c) increasing data size and cluster size

generic runtime10. For a fair comparison, we re-implemented

the algorithm as described in the paper and ran it on the

same 40-core cluster as the SystemML generated plan. The

hand-coded algorithm contains 8 full MapReduce jobs and

2 map-only jobs, while the execution plan generated by

SystemML consists of 10 full MapReduce jobs. For the hand-

coded algorithm, the matrices are all prepared in the required

formats: V is in cell representation, W is in a row-wise

representation and H is in a column-wise representation. For

the SystemML plan, the input matrices are all in block repre-

sentation with block size 1000× 1000. Figure 7(a) shows the

performance comparison of SystemML with the hand-coded

implementation. Surprisingly, the performance of SystemML

is significantly better than the hand-coded implementation.

As the number of non-zeros increases from 10 million to

750 million, execution time on SystemML increases steadily

from 519 seconds to around 800 seconds, while execution

time for the hand-coded plan increases dramatically from 477

seconds to 4048 seconds! There are two main reasons for

this difference. First, SystemML uses the block representation

for V, W, and H, while in the hand-coded implementation,

the largest matrix V is in cell representation. As discussed

in Section III-D1 and to be demonstrated in Section V-C,

the block representation provides significant performance ad-

vantages over the cell representation. Second, the hand-coded

implementation employs an approach very similar to CPMM

for the two most expensive matrix multiplications in GNMF:

t(W)%*%V and V%*%t(H), but without the local aggregator

(see Section IV-B). As will be shown in Section V-C, CPMM

with local aggregation significantly outperforms CPMM with-

out local aggregation.

Scalability on 100-core EC2 cluster: To test SystemML on

a large cluster, we ran GNMF on a 100-core EC2 cluster.

In the first experiment, we fixed the number of nodes in the

cluster to be 100, and ran GNMF by varying the number of

non-zero values from 100 million to 5 billion. Figure 7(b)

demonstrates the scalability of SystemML for one iteration

of GNMF. In the second experiment (shown in Figure 7(c)),

we varied the number of worker nodes from 40 to 100 and

scaled the problem size proportionally from 800 million non-

zero values to 2 billion non-zeros. The ideal scale-out behavior

would depict a flat line in the chart. However, it is impossible

10Through personal contact with the authors of [10], we were informed
that all the scalability experiments for the hand-coded GNMF algorithm were
conducted on a proprietary SCOPE cluster with thousands of nodes, and the
actual number of nodes scheduled for each execution was not known.

to realize this ideal scale-out behavior due to many factors

such as network overheads. Nevertheless, Figure 7(c) presents

a steady increase in execution time with the growth in data

and cluster size.

Besides scalability, DML improves productivity and reduces

development time of ML algorithms significantly. For exam-

ple, GNMF is implemented in 11 lines of DML script, but

requires more than 1500 lines of Java code in the hand-coded

implementation. Similar observations have been made in [18]

regarding the power of declarative languages in substantially

simplifying distributed systems programming.

C. Optimizations

RMM vs CPMM: We now analyze the performance dif-

ferences between alternative execution plans for matrix mul-

tiplication, RMM and CPMM. We consider three examples

from GNMF (Script 1): V%*%t(H), W%*%(H%*%t(H)),

and t(W)%*%W. To focus on matrix multiplication, we set

H’=t(H), S=H%*%t(H), and W’=t(W). Then the three

multiplications are defined as: V%*%H’, W%*%S and W’%*%W.

The inputs of these three multiplications have very distinct

characteristics as shown in Table IV. With d taking values in

millions, V is a very large matrix; H’ is a medium sized matrix;

W’ and W are very tall and skinny matrices; and S is a tiny

matrix. We compare execution times for the two alternative

algorithms for the three matrix multiplications in Figures 8(a),

8(b) and 8(c).

Note that neither of the algorithms always outperforms the

other with their relative performance depending on the data

characteristics as described below.

For V%*%H’, due to the large sizes of both V and H’,

CPMM is the preferred approach over RMM, because the

shuffling cost in RMM increases dramatically with the number

of rows in V.

For W%*%S, RMM is preferred over CPMM, as S is small

enough to fit in one block, and RMM essentially partitions W

and broadcasts S to perform the matrix multiplication.

For W’%*%W, the cost for RMM is shuffle(|W ′| + |W |) +
IOdfs(|W

′|+ |W |+ |S|) with a degree of parallelism of only

1, while the cost of CPMM is roughly shuffle(|W ′| + |W | +
r|S|) + IOdfs(2r|S| + |W ′| + |W | + |S|). For CPMM, the

degree of parallelization is d/1000, which ranges from 1000

to 50000 as d increases from 1 million to 50 million. When

d is relatively small, even though the degree of parallelization

is only 1, the advantage of the low shuffle cost makes RMM

perform better than CPMM. However, as d increases, CPMM’s



TABLE IV
CHARACTERISTICS OF MATRICES.

Matrix X,Y,W H’ V W’ S H

Dimension d× 10 100, 000× 10 d× 100, 000 10× d 10× 10 10× 100, 000
Sparsity 1 1 0.001 1 1 1

#non zeros 10d 1 million 100d 10d 100 1 million

TABLE V
FILE SIZES OF MATRICES FOR DIFFERENT d (BLOCK SIZE IS 1000X1000)

d (million) 1 2.5 5 7.5 10 15 20 30 40 50

V # non zero (million) 100 250 500 750 1000 1500 2000 3000 4000 5000
Size (GB) 1.5 3.7 7.5 11.2 14.9 22.4 29.9 44.9 59.8 74.8

X,Y,W,W’ # non zero (million) 10 25 50 75 100 150 200 300 400 500
Size (GB) 0.077 0.191 0.382 0.573 0.764 1.1 1.5 2.2 3.0 3.7

higher degree of parallelism makes it outperform RMM.

Overall, CPMM performs very stably with increasing sizes

of W’ and W.

Piggybacking: To analyze the impact of piggybacking several

lops into a single MapReduce job, we compare piggyback-

ing to a naive approach, where each lop is evaluated in

a separate MapReduce job. Depending on whether a single

lop dominates the cost of evaluating a LOP-Dag, the pig-

gybacking optimization may or may not be significant. To

demonstrate this, we first consider the expression W*(Y/X)

with X=W%*%H%*%t(H) and Y=V%*%t(H). The matrix

characteristics for X, Y, and W are listed in Tables IV

and V. Piggybacking reduces the number of MapReduce jobs

from 2 to 1 resulting in a factor of 2 speed-up as shown

in Figure 9(a). On the other hand, consider the expression

W*(V%*%t(H)/X) from the GNMF algorithm (step 8),

where X=W%*%H%*%t(H). While piggybacking reduces the

number of MapReduce jobs from 5 to 2, the associated

performance gains are small as shown in Figure 9(b).
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Fig. 9. Piggybacking or not: (a) W*(Y/X), (b) W*(V%*%t(H)/X)

Matrix Blocking: Table VI shows the effect of matrix block-

ing on storage and computational efficiency (time) using the

expression V%*%H’. As a baseline, the table also includes the

corresponding numbers for the cell representation. The matrix

characteristics for V with d=1 million rows and H are listed

in Table IV. The execution time for the expression improves

by orders of magnitude from hours for the cell representation

to minutes for the block representation.

The impact of block size on storage requirements varies

for sparse and dense matrices. For dense matrix H ′, blocking

significantly reduces the storage requirements compared to

the cell representation. On the other hand, for sparse matrix

V , small block sizes can increase the storage requirement

TABLE VI
COMPARISON OF DIFFERENT BLOCK SIZES

Block Size 1000x1000 100x100 10x10 cell

Execution time 117sec 136sec 3hr >5hr

Size of V (GB) 1.5 1.9 4.8 3.0

Size of H’ (MB) 7.8 7.9 8.1 31.0

compared to the cell representation, since only a small fraction

of the cells are non-zero per block and the per block metadata

space requirements are relatively high.

Figure 10(a) shows the performance comparison for dif-

ferent block sizes with increasing matrix sizes11. This graph

shows that the performance benefit of using a larger block size

increases as the size of V increases.

Local Aggregator for CPMM: To understand the perfor-

mance advantages of using a local aggregator (Section IV-B),

consider the evaluation of V%*%H’ (V is d × w matrix, and

H’ is w × t matrix). The matrix characteristics for V and H’

can be found in Tables IV and V. We first set w = 100, 000
and t = 10. In this configuration, each reducer performs 2

cross products on average, and the ideal performance gain

through local aggregation is a factor of 2. Figure 10(b) shows

the benefit of using the local aggregator. As d increases from

1 million to 20 million, the speedup ranges from 1.2 to 2.

We next study the effect of w, by fixing d at 1 million

and varying w from 100,000 to 300,000. The number of cross

products performed in each reducer increases as w increases.

Consequently, as shown in Figure 11(a), the intermediate result

of mmcj increases linearly with w when a local aggregator is

not deployed. On the other hand, when a local aggregator is

applied, the size of the intermediate result stays constant as

shown in the figure. Therefore, the running time with a local

aggregator increases very slowly while without an aggregator

the running time increases more rapidly (see Figure 11(b)).

D. Additional Algorithms

In this section, we showcase another two classic algorithms

written in DML: Linear Regression and PageRank [19].

Linear Regression: Script 2 is an implementation of a

conjugate gradient solver for large, sparse, regularized linear

11Smaller block sizes were ignored in this experiment since they took hours
even for 1 million rows in V .
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Fig. 8. Comparing two alternatives of matrix multiplication: (a) V%*%H’, (b) W%*%S, (c) W’%*%W
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Fig. 11. CPMM with increasing w: (a) intermediate result size, (b) execution
time

regression problems. In the script below, V is a data matrix

(sparsity 0.001) whose rows correspond to training data points

in a high-dimensional, sparse feature space. The vector b is a

dense vector of regression targets. The output vector w has

the learnt parameters of the model that can be used to make

predictions on new data points.

Script 2: Linear Regression
1: V=readMM("in/V", rows=1e8, cols=1e5, nnzs=1e10);

2: y=readMM("in/y", rows=1e8, cols=1);

3: lambda = 1e-6; // regularization parameter

4: r=-(t(V) %*% y) ;

5: p=-r ;

6: norm_r2=sum(r*r);

7: max_iteration=20;

8: i=0;

9: while(i<max_iteration){
10: q=((t(V) %*% (V %*% p)) + lambda*p)

11: alpha= norm_r2/(t(p)%*%q);

12: w=w+alpha*p;

13: old_norm_r2=norm_r2;

14: r=r+alpha*q;

15: norm_r2=sum(r*r);

16: beta=norm_r2/old_norm_r2;

17: p=-r+beta*p;

18: i=i+1;}
19:writeMM(w, "out/w");

PageRank: Script 3 shows the DML script for the PageR-

ank algorithm. In this algorithm, G is a row-normalized

adjacency matrix (sparsity 0.001) of a directed graph. The

procedure uses power iterations to compute the PageRank of

every node in the graph.

Figures 12(a) and 12(b) show the scalability of SystemML

for linear regression and PageRank, respectively. For linear

regression, as the number of rows increases from 1 million to

20 million (non-zeros ranging from 100 million to 2 billion),

the execution time increases steadily. The PageRank algorithm

also scales nicely with increasing number of rows from 100

thousand to 1.5 million (non-zeros ranging from 100 million

to 2.25 billion).

Script 3: PageRank
1: G=readMM("in/G", rows=1e6, cols=1e6, nnzs=1e9);

//p: initial uniform pagerank

2: p=readMM("in/p", rows=1e6, cols=1);

//e: all-ones vector

3: e=readMM("in/e", rows=1e6, cols=1);

//ut: personalization

4: ut=readMM("in/ut", rows=1, cols=1e6);

5: alpha=0.85; //teleport probability

6: max_iteration=20;

7: i=0;

8: while(i<max_iteration){
9: p=alpha*(G%*%p)+(1-alpha)*(e%*%ut%*%p);

10: i=i+1;}
11:writeMM(p, "out/p");
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Fig. 12. (a) Execution of Linear Regression with increasing data size on 40-
core cluster, (b) Execution of PageRank with increasing data size on 40-core
cluster

VI. RELATED WORK

The increasing demand for massive-scale analytics has

recently spurred many efforts to design systems that enable

distributed machine learning. DryadLINQ [20] is a compiler

which translates LINQ programs into a set of jobs that can

be executed on the Microsoft Dryad platform. LINQ is a

.NET extension that provides declarative programming for data

manipulation. The DryadLINQ set of language extensions is

supported in C# and facilitates the generation and optimization

of distributed executions plans for the specified portions of

the C# program. The Large Vector Library built on top

of DryadLINQ provides simple mathematical primitives and

datatypes using which machine learning algorithms can be



implemented in C#. However, unlike SystemML, the onus of

identifying the data parallel components of an algorithm and

expressing them in DryadLINQ expressions is still left to the

programmer.

Apache Mahout [13] provides a library of ML algorithms

written in Hadoop. Compared to SystemML’s declarative ap-

proach, Mahout requires detailed implementation for new al-

gorithms and change of existing code for performance tuning.

Pegasus [21] is a Hadoop-based library that implements a

class of graph mining algorithms that can be expressed via

repeated matrix-vector multiplications. The generic versions of

the key Pegasus primitive is subsumed by matrix multiplication

operators in SystemML. Unlike Pegasus, SystemML does not

consider a single primitive in isolation but attempts to optimize

a sequence of general linear algebra computations.

Spark [22] is a cluster computing framework that allows

users to define distributed datasets that can be cached in

memory across machines for applications that require frequent

passes through them. Likewise, parallel computing toolboxes

in Matlab and R allow distributed objects to be created and

message-passing functions to be defined to implement data and

task parallel algorithms. By contrast, SystemML is designed

to process massive datasets that may not fit in distributed

memory and need to reside on disk. R packages like rmpi,

rpvm expose the programmer directly to message-passing

systems with significant expectation of parallel programming

expertise. Other popular packages such as SNOW [23] that are

built on top of MPI packages are relatively more convenient

but still low-level (e.g., requiring explicit distribution of data

across worker nodes) in comparison to the rapid prototyping

environment enabled by SystemML. Ricardo [24] is another R-

Hadoop system where large-scale computations are expressed

in JAQL, a high level query interface on top of Hadoop, while

R is called for smaller-scale single-node statistical tasks. This

requires the programmer to identify scalability of different

components of an algorithm, and re-express large-scale matrix

operations in terms of JAQL queries. Similar to Ricardo, the

RHIPE [25] package provides the capability to run an instance

of R on each Hadoop node, with the programmer needing to

directly write Map and Reduce functions.

VII. CONCLUSIONS

In this paper we have presented SystemML - a system

that enables the development of large-scale machine learning

algorithms. SystemML applies a sequence of transformations

to translate DML scripts, the language in which machine learn-

ing algorithms are expressed, into highly optimized execution

plans over MapReduce. Starting with program analysis, these

transformations include evaluation and selection of alternative

execution plans and final assembly of lower-level operators

into small number of MapReduce jobs. Systematic empirical

results in this paper have shown the benefit of a number of

optimization strategies such as blocking, piggybacking and

local aggregation, and the applicability of SystemML to scale-

up a diverse set of machine learning algorithms. Ongoing

work includes system-wide cost-based optimizations, e.g.,

evaluation and selection of multiple matrix blocking strate-

gies, development of additional constructs to support machine

learning meta-tasks such as model selection, and enabling a

large class of algorithms to be probed at an unprecedented

data scale.
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