US20050031866A1 - Silicon carbide fiber having boron nitride layer in fiber surface and process for the production thereof - Google Patents

Silicon carbide fiber having boron nitride layer in fiber surface and process for the production thereof Download PDF

Info

Publication number
US20050031866A1
US20050031866A1 US10/751,450 US75145004A US2005031866A1 US 20050031866 A1 US20050031866 A1 US 20050031866A1 US 75145004 A US75145004 A US 75145004A US 2005031866 A1 US2005031866 A1 US 2005031866A1
Authority
US
United States
Prior art keywords
fiber
boron
silicon carbide
polycarbosilane
boron nitride
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US10/751,450
Inventor
Hiroyuki Yamaoka
Yoshikatu Harada
Teruaki Fujii
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2001307112A external-priority patent/JP2003113537A/en
Application filed by Individual filed Critical Individual
Priority to US10/751,450 priority Critical patent/US20050031866A1/en
Priority to US10/981,525 priority patent/US7005184B2/en
Publication of US20050031866A1 publication Critical patent/US20050031866A1/en
Abandoned legal-status Critical Current

Links

Classifications

    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F9/00Artificial filaments or the like of other substances; Manufacture thereof; Apparatus specially adapted for the manufacture of carbon filaments
    • D01F9/08Artificial filaments or the like of other substances; Manufacture thereof; Apparatus specially adapted for the manufacture of carbon filaments of inorganic material
    • D01F9/10Artificial filaments or the like of other substances; Manufacture thereof; Apparatus specially adapted for the manufacture of carbon filaments of inorganic material by decomposition of organic substances
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/56Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides
    • C04B35/565Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides based on silicon carbide
    • C04B35/571Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides based on silicon carbide obtained from Si-containing polymer precursors or organosilicon monomers
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/628Coating the powders or the macroscopic reinforcing agents
    • C04B35/62844Coating fibres
    • C04B35/62857Coating fibres with non-oxide ceramics
    • C04B35/62865Nitrides
    • C04B35/62868Boron nitride
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/71Ceramic products containing macroscopic reinforcing agents
    • C04B35/78Ceramic products containing macroscopic reinforcing agents containing non-metallic materials
    • C04B35/80Fibres, filaments, whiskers, platelets, or the like
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3232Titanium oxides or titanates, e.g. rutile or anatase
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/48Organic compounds becoming part of a ceramic after heat treatment, e.g. carbonising phenol resins
    • C04B2235/483Si-containing organic compounds, e.g. silicone resins, (poly)silanes, (poly)siloxanes or (poly)silazanes
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/52Constituents or additives characterised by their shapes
    • C04B2235/5208Fibers
    • C04B2235/5216Inorganic
    • C04B2235/524Non-oxidic, e.g. borides, carbides, silicides or nitrides
    • C04B2235/5244Silicon carbide
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/52Constituents or additives characterised by their shapes
    • C04B2235/5208Fibers
    • C04B2235/5252Fibers having a specific pre-form
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/52Constituents or additives characterised by their shapes
    • C04B2235/5208Fibers
    • C04B2235/5264Fibers characterised by the diameter of the fibers
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/74Physical characteristics
    • C04B2235/75Products with a concentration gradient
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/29Coated or structually defined flake, particle, cell, strand, strand portion, rod, filament, macroscopic fiber or mass thereof
    • Y10T428/2913Rod, strand, filament or fiber
    • Y10T428/2933Coated or with bond, impregnation or core

Definitions

  • the present invention relates to a silicon carbide fiber having boron nitride having function as an interface for a ceramic-based composite material in a fiber surface, and a process for the production thereof. Specifically, it relates to a silicon carbide fiber which has a slope constitution in which the existent ratio of boron slopingly increases towards the surface of the fiber.
  • a SiC/SiC composite material obtainable by reinforcing a silicon carbide matrix with a silicon carbide fiber is one of the most promising materials in a high-temperature use.
  • characteristics of an interface between the fiber and the matrix are very important for controlling the mechanical properties of the SiC/SiC composite material. That is, a difference in the interfacial bonding strength of the fiber and the matrix exerts a great influence on the mechanical strength of the composite material.
  • the interfacial bonding of the fiber and the matrix is too large, cracks generated in the matrix easily spread into the fiber so that the material shows very brittle breakdown behavior and its strength and toughness become very low.
  • the interfacial bonding of the fiber and the matrix is appropriate, bridging or pull-out of the fiber occurs at the destruction of the material so that favorable strength and toughness are shown.
  • an interface layer is formed on a fiber surface.
  • an interface material there are used carbon, boron nitride and the like. Of these interface materials, boron nitride is the most excellent in heat resistance and receives attention.
  • boron nitride When boron nitride is used as an interface material for a ceramic-based composite material, it is required to form a boron nitride layer on a reinforcing fiber surface in some way.
  • boron nitride layer is carried out by using boron trichloride or boron trifluoride and ammonia as a raw material gas according to a chemical vapor deposition method (CVD method)
  • CVD method requires a special CVD device and the raw material gas is expensive and dangerous, so that it is a very high-cost process.
  • M. D. Sacks et al. disclose a method for forming a boron nitride layer on a silicon carbide fiber surface in U.S. Pat. No. 6,040,008 and Ceramic Engineering and Science Proceedings Volume 21, Issue 4(2,000), p 275-281.
  • a boron compound is added to a high molecular-weight polycarbosilane having a weight average molecular weight of 7,000 to 16,000, the mixture is dry-spun to form a spun fiber, the spun fiber is sintered in argon gas to introduce boron into a silicone carbide fiber homogeneously, and the resultant fiber is again sintered in a nitrogen-containing atmosphere, thereby forming a boron nitride layer on a silicon carbide fiber surface.
  • the silicon carbide layer formed by the above method is arranged in a direction perpendicular to a fiber axis direction so that the boron nitride layer having such a structure can not be expected to exert a big effect as an interface layer for a ceramic-based composite material.
  • a silicon carbide fiber having a boron nitride layer in a fiber surface and having the following properties of a to c,
  • a silicon carbide fiber according to the above which is formed of a composite phase comprising a silicon carbide phase and a boron nitride phase.
  • FIG. 1 is a diagram showing the result of analysis of a boron concentration change from the surface of a precursor fiber to the inside thereof by Auger electron spectroscopy in Example 1.
  • FIG. 2 is an illustration which schematically shows steps of the generation of a silicon carbide fiber having a boron nitride layer in a fiber surface, provided by the present invention.
  • the present invention relates to a silicon carbide fiber which has, in a fiber surface, a boron nitride layer useful as a reinforcing fiber for a ceramic-based composite material and to a process for the production thereof.
  • the silicon carbide fiber of the present invention has a central portion (silicon carbide phase) covering mechanical properties and a boron nitride phase covering interface function in a surface layer and near the surface layer, further has a slope constitution in which boron increases towards the surface layer and has a structure in which boron exists in the fiber surface and in the central portion in specific ratios respectively.
  • the silicon carbide fiber of the present invention has a fiber structure in which the boron nitride layer has a layered structure which is parallel to the fiber surface. Accordingly, there can be obtained a fiber having an interface function excellent in oxidation resistance.
  • a surface layer having a high boron concentration is formed at a precursor step, as shown in FIG. 1, and it is reacted with a nitrogen-containing substance (e.g., nitrogen or ammonia) which is homogeneously diffused from the fiber surface. It is estimated that a boron nitride layered structure, which is parallel to the fiber surface, is formed as a result.
  • the silicon carbide phase may be amorphous or crystalline.
  • the present invention concerns a silicon carbide fiber formed of a composite phase comprising a silicon carbide layer (first phase) and a boron nitride phase (second phase), which fiber is characterized in that the existent ratio of boron slopingly increases towards the surface layer of the fiber.
  • the silicon carbide phase (first phase) forms an inside phase of the fiber obtained by the present invention and it plays an important role in covering mechanical properties.
  • the existent ratio of the first phase based on the fiber as a whole is preferably 97% by weight or higher. It is preferred to control the existent ratio of the first phase in the range of from 98 to 99% by weight for exerting the intended functions of the second phase sufficiently and exerting high mechanical properties concurrently.
  • the boron nitride which constitutes the second phase plays an important role in exerting the intended function in the present invention. It may be amorphous or crystalline. Further, the second phase may include boron carbide.
  • the existent ratio of the second phase which constitutes a surface layer portion of the fiber is preferably 0.5 to 3.5% by weight (boron content 0.2 to 1.5% by weight). It is preferred to control the existent ratio of the second phase in the range of from 0.7 to 2.0% by weight (boron content 0.3 to 0.9% by weight) for exerting its functions sufficiently and exerting high strength concurrently.
  • the existent ratio of boron in the second phase slopingly increases towards the fiber surface.
  • the thickness of a region where the slope in the constitution is apparently recognized is preferably controlled in the range of 5 to 500 nm.
  • the above “existent ratio” of the second phase refers to a ratio contained in the fiber as a whole. Since the existent ratio of boron in the region of from the fiber surface to a depth of 500 nm is 0.5 to 1.5% by weight and the existent ratio of boron in the central portion which is a region of a depth of at least 3 ⁇ m below the fiber surface is 0 to 0.2 or less % by weight, the silicon carbide fiber has an advantage that the fiber maintains excellent oxidation resistance and also shows a function as an interface. When the amount of boron in the fiber surface is smaller than the above range, the function as an interface is insufficient. When the amount of boron in the central portion is larger than the above range, the fiber is insufficient in oxidation resistance.
  • a modified polycarbosilane obtainable by modifying a polycarbosilane which has a main chain structure represented by the formula, (in which R is a hydrogen atom, a lower alkyl group or a phenyl group) and a number average molecular weight of 200 to 10,000, with an organic boron compound is melt-spun or a mixture of the modified polycarbosilane and an organic boron compound is melt-spun, to obtain a spun fiber; the spun fiber is infusibilized; and then the infusible fiber is sintered in a nitrogen-containing atmosphere, whereby the silicon carbide fiber having boron nitride in a fiber surface can be produced.
  • R is a hydrogen atom, a lower alkyl group or a phenyl group
  • the first step of the present invention's process is a step of producing a modified polycarbosilane having a number average molecular weight of 1,000 to 50,000 as a starting material used for producing the silicon carbide fiber having boron nitride in a fiber surface.
  • the fundamental production process of the above modified polycarbosilane is remarkably similar to the production process of JP-A-56-74126. However, in the present invention, it is required to carefully control the bonding state of a functional group described in JP-A-56-74126. The general outlines thereof will be explained hereinafter.
  • the modified polycarbosilane as a starting material is derived mainly from a polycarbosilane having a main chain structure represented by the formula, (in which R is a hydrogen atom, a lower alkyl group or a phenyl group) and a number average molecular weight of 200 to 10,000 and an organic boron compound having a basic structure of the formula B(OR′) n or the formula BR′′m (in which R′ is an alkyl group having 1 to 20 carbon atoms or a phenyl group, R′′ is acetyl acetonate, and each of m and n is an integer of more than 1).
  • polycarbosilane there may be used, as the above polycarbosilane, a polycarbosilane in which at least parts of silicon atoms are bonded to metal elements such as Ti, Zr, Hf, Al, V, Mg or Y directly or through oxygen atoms.
  • the fiber having a slope constitution For producing the fiber having a slope constitution, provided by the present invention, it is required to select slow reaction conditions under which only part of the organic boron compound forms a bond with the polycarbosilane. For the above purpose, it is required to carry out the reaction at a temperature of 280° C. or lower, preferably 250° C. or lower, in an inert gas. Under the above reaction conditions, even when the above organic boron compound is reacted with the polycarbosilane, it bonds as a monofunctional polymer (i.e., a pendant-like bonding) and no large increase in molecular weight occurs.
  • the thus-obtained modified polycarbosilane in which the organic boron compound is partially bonded plays an important role in improving the compatibility between the polycarbosilane and the organic boron compound.
  • the polycarbosilane forms a cross-linking structure and a noticeable increase in molecular weight is observed. In this case, sudden heat generation and an increase in melt viscosity occur during the reaction. On the other hand, when only one functional group is reacted as described above and an unreacted organic boron compound remains, conversely, a decrease in melt viscosity is observed.
  • the present invention uses mainly, as a starting material, a material in which the above modified polycarbosilane coexists with an organic boron compound which is in an unreacted state or an organic boron compound which is dimer, trimer or so.
  • the modified polycarbosilane alone can be similarly used as a starting material when the modified polycarbosilane contains a modified polycarbosilane component having an extremely low molecular weight.
  • the modified polycarbosilane obtained in the first step or a mixture of the modified polycarbosilane and a low molecular-weight organic boron compound is molten to form a spinning solution, optionally the spinning solution is filtered to remove substances which are to be detriment at the time of spinning such as a microgel or impurities, and the spinning solution is spun with a generally used synthetic fiber-spinning machine. While the temperature of the spinning solution at the spinning time differs depending upon the softening temperature of the modified polycarbosilane as raw materials, it is advantageous to select a temperature in the range of from 50 to 200° C.
  • the above spinning machine may be equipped with a humidifying and heating cylinder in a nozzle bottom portion as required.
  • the diameter of a fiber is adjusted by changing the amount of ejection from a nozzle and the take-up speed of a high-speed take-up unit attached to a bottom portion of the spinning machine.
  • the second step of the present invention's process can give an intended fiber by dissolving the modified polycarbosilane obtained in the first step or a mixture of the modified polycarbosilane and low molecular-weight organic boron compound in, for example, benzene, toluene, xylene or a solvent which can dissolve the modified polycarbosilane and the low molecular-weight organic boron compound, to form a spinning solution, optionally filtering the spinning solution to remove substances which are to be detriment at the time of spinning such as a macrogel or impurities, and spinning the spinning solution with a generally used synthetic fiber-spinning machine by a dry spinning method while controlling the take-up speed.
  • benzene, toluene, xylene or a solvent which can dissolve the modified polycarbosilane and the low molecular-weight organic boron compound to form a spinning solution
  • optionally filtering the spinning solution to remove substances which are to be detriment at the time
  • a spinning cylinder may be attached to the spinning machine as required.
  • An atmosphere in the cylinder is changed to a mix atmosphere mixed with at least one gas selected from the above solvents or replaced with an atmosphere of air, an inert gas, heated air, a heated inert gas, steam, an ammonia gas, a hydrocarbon gas or an organosilicon compound gas, whereby solidification of a fiber in the spinning cylinder can be controlled.
  • the above spun fiber is preliminarily heated in an oxidizing atmosphere under the action of tension or no tension, to infusibilize the spun fiber.
  • the purpose of this step is to prevent the fiber from melting in the following sintering step and to prevent adjacent fibers from bonding to each other.
  • the temperature for the treatment and the time for the treatment differ depending upon the constitution. Although not specially limited, generally, the treatment is carried out in the range of 50 to 400° C. for several hours to 30 hours.
  • the above oxidizing atmosphere may contain moisture, nitrogen oxide, ozone, etc., which increase the oxidation strength of the spun fiber, and an oxygen partial pressure may be changed intentionally.
  • the softening temperature of the spun fiber becomes less than 50° C. according to the ratio of substances having a low molecular weight contained in the raw materials.
  • a treatment for promoting the oxidation of a fiber surface is previously carried out at a temperature lower than the above treatment temperature in some cases.
  • the above infusible fiber is sintered under tension or no tension at a temperature in the range of 500 to 2,000° C. in a nitrogen-containing atmosphere, to obtain the intended silicon carbide fiber formed of a composite phase comprising a silicon carbide phase (first phase) and a boron nitride phase (second phase), in which the existent ratio of boron slopingly increases towards the surface layer.
  • FIG. 2 schematically shows steps of the generation of the silicon carbide fiber having the intended slope constitution, provided by the present invention.
  • the mixture of the modified polycarbosilane and the low-molecular weight organic boron compound was dissolved in toluene, the resultant solution was placed in a spinning machine made of glass, it was temperature-increased in the spinning machine in which nitrogen had been sufficiently substituted to distill the toluene off and the resultant material was melt-spun at 180° C.
  • the spun fiber was stepwise heated up to 150° C. in air to form an infusible fiber, and the infusible fiber was sintered in nitrogen at 1,500° C. for 1 hour, to obtain a silicon carbide fiber having a boron nitride layer in a fiber surface.
  • the boron nitride layer having a layered structure which was parallel to the fiber surface was formed in the fiber surface.
  • the inside silicon carbide phase was amorphous.
  • the boron content in the fiber was 0.5% by weight. Further, the fiber was examined for the distribution state of constitutive atoms by Auger.
  • the molar ratio of B/Si was 0.85 in the region of from the outermost surface to a depth of 50 nm, the molar ratio of B/Si was 0.20 in the region of from a depth of 100 nm to 200 nm below the outermost surface, and the molar ratio of B/Si in the central portion was 0. Accordingly, it was confirmed that the fiber had a slope constitution in which boron increased towards the surface.
  • the fiber had a tensile strength of 3.0 GPa.
  • the fiber was heat-treated in air at 1,000° C. for 100 hours and then it was measured for a tensile strength at room temperature. In this case, the fiber after the heat treatment retained at least 90% of the tensile strength shown before the heat treatment.
  • the above immersion-drying-sintering were repeated eight times, to obtain a SiC/SiC composite material.
  • the SiC/SiC composite material was measured for a three-point bending strength at room temperature. The three-point bending strength was 450 MPa. According to fracture observation, it was foundthatmany fibers were pulled out.
  • the mixture of the modified polycarbosilane and the low-molecular weight organic boron compound was dissolved in toluene, the resultant solution was placed in a spinning machine made of glass, it was temperature-increased in the spinning machine in which nitrogen had been sufficiently substituted to distill the toluene off and the resultant material was melt-spun at 180° C.
  • the spun fiber was stepwise heated up to 150° C. in air to form an infusible fiber, and the infusible fiber was sintered in nitrogen at 1,900° C. for 1 hour, to obtain a silicon carbide fiber having a boron nitride layer in a fiber surface.
  • the fiber was examined for the distribution state of constitutive atoms by Auger.
  • the molar ratio of B/Si was 0.85 in the region of from the outermost surface to a depth of 50 nm, the molar ratio of B/Si was 0.16 in the region of from a depth of 100 nm to 200 nm below the outermost surface, and the molar ratio of B/Si in the central portion was 0.
  • the fiber had a slope constitution in which boron increased towards the surface.
  • the fiber had a tensile strength of 2.8 GPa.
  • the above immersion-drying-sintering were repeated eight times, to obtain a SiC/SiC composite material.
  • the SiC/SiC composite material was measured for a three-point bending strength at room temperature.
  • the three-point bending strength was 400 MPa. According to fracture observation, it was found that many fibers were pulled out.
  • a silicon carbide fiber having a boron nitride layer in a fiber surface was synthesized according to the method described in U.S. Pat. No. 6,040,008.
  • As a result of TEM observation of the obtained silicon carbide fiber (average diameter: 10 ⁇ m), it was confirmed that boron nitride layers formed in the fiber surface were arranged in a direction perpendicular to a fiber axis direction.
  • the inside silicon carbide phase was crystalline.
  • the boron content in the fiber was 2% by weight. Further, the fiber was examined for the distribution state of constitutive atoms by Auger.
  • the molar ratio of B/Si was 0.85 in the region of from the outermost surface to a depth of 50 nm, the molar ratio of B/Si was 0.25 in the region of from a depth of 100 nm to 200 nm below the outermost surface, and the molar ratio of B/Si in the central portion was 0.1.
  • the fiber had a slope constitution in which boron increased towards the surface, while the existence of boron was confirmed even in the inside of the fiber.
  • the fiber had a tensile strength of 2.8 GPa.
  • the fiber was heat-treated in air at 1,000° C. for 100 hours and then it was measured for a tensile strength at room temperature.
  • the tensile strength of the fiber was decreased to 70% or lower based on the tensile strength shown before the heat treatment.
  • the above immersion-drying-sintering were repeated eight times, to obtain a SiC/SiC composite material.
  • the SiC/SiC composite material was measured for a three-point bending strength at room temperature. The three-point bending strength was 100 MPa, and brittle breakdown behavior was observed. According to fracture observation, it was found that no fiber was pulled out.
  • the mixture of the modified polycarbosilane and the low-molecular weight organic metal compound was dissolved in toluene, the resultant solution was placed in a spinning machine made of glass, it was temperature-increased in the spinning machine in which nitrogen had been sufficiently substituted to distill the toluene off and the resultant material was melt-spun at 180° C.
  • the spun fiber was stepwise heated up to 150° C. in air to form an infusible fiber, and the infusible fiber was sintered in nitrogen at 1,500° C. for 1 hour, to obtain an inorganic fiber having a boron nitride layer in a fiber surface.
  • the fiber As a result of TEM observation of the obtained inorganic fiber (average diameter: 10 ⁇ m), it was confirmed that a boron nitride layer was formed in the fiber surface.
  • the inside silicon carbide phase was amorphous.
  • the boron content in the fiber was 0.5% by weight.
  • the fiber was examined for the distribution state of constitutive atoms by Auger. The existent ratio of boron in the region of from the outermost surface to a depth of 500 nm was 1.2% by weight, and the existent ratio of boron was 0.1% by weight in the region of from a depth of 3 ⁇ m to 5 ⁇ m below the outermost surface.
  • the fiber had a slope constitution in which boron increased towards the surface.
  • the fiber had a tensile strength of 3.0 GPa.
  • the above immersion-drying-sintering were repeated eight times, to obtain a SiC/SiC composite material.
  • the SiC/SiC composite material was measured for a three-point bending strength at room temperature.
  • the three-point bending strength was 460 MPa. According to fracture observation, it was found that many fibers were pulled out.
  • 3 g of tributyl borate was added to the modified polycarbosilane for the purpose of intentionally making a low-molecular weight organic metal compound coexist, to obtain a mixture of the modified polycarbosilane and the low-molecular weight organic metal compound.
  • the mixture of the modified polycarbosilane and the low-molecular weight organic metal compound was dissolved in toluene, the resultant solution was placed in a spinning machine made of glass, it was temperature-increased in the spinning machine in which nitrogen had been sufficiently substituted to distill the toluene off and the resultant material was melt-spun at 180° C.
  • the spun fiber was stepwise heated up to 150° C. in air to form an infusible fiber, and the infusible fiber was sintered in nitrogen at 1,500° C. for 1 hour, to obtain an inorganic fiber having a boron nitride layer in a fiber surface.
  • the fiber As a result of TEM observation of the obtained inorganic fiber (average diameter: 10 ⁇ m), it was confirmed that a boron nitride layer was slightly formed in the fiber surface.
  • the inside silicon carbide phase was amorphous.
  • the boron content in the fiber was 0.3% by weight.
  • the fiber was examined for the distribution state of constitutive atoms by Auger. The existent ratio of boron in the region of from the outermost surface to a depth of 500 nm was 0.3% by weight, and the existent ratio of boron was 0.1% by weight in the region of from a depth of 3 ⁇ m to 5 ⁇ m below the outermost surface.
  • the fiber had a slope constitution in which boron increased towards the surface.
  • the fiber had a tensile strength of 3.0 GPa.
  • the above immersion-drying-sintering were repeated eight times, to obtain a SiC/SiC composite material.
  • the SiC/SiC composite material was measured for a three-point bending strength at room temperature. The three-point bending strength was 100 Mpa or lower, and brittle breakdown behavior was observed. According to fracture observation, it was found that almost no fiber was pulled out.
  • tributyl borate 50 g was added to the modified polycarbosilane for the purpose of intentionally making a low-molecular weight organic metal compound coexist, to obtain a mixture of the modified polycarbosilane and the low-molecular weight organic metal compound.
  • the mixture of the modified polycarbosilane and the low-molecular weight organic metal compound was dissolved in toluene, the resultant solution was placed in a spinning machine made of glass, it was temperature-increased in the spinning machine in which nitrogen had been sufficiently substituted to distill the toluene off and the resultant material was melt-spun at 160° C.
  • the spun fiber was stepwise heated up to 150° C. in air to form an infusible fiber, and the infusible fiber was sintered in nitrogen at 1,500° C. for 1 hour, to obtain an inorganic fiber having a boron nitride layer in a fiber surface.
  • the fiber As a result of TEM observation of the obtained inorganic fiber (average diameter: 10 ⁇ m), it was confirmed that a boron nitride layer was formed in the fiber surface.
  • the inside silicon carbide phase was amorphous.
  • the boron content in the fiber was 0.8% by weight.
  • the fiber was examined for the distribution state of constitutive atoms by Auger. The existent ratio of boron in the region of from the outermost surface to a depth of 500 nm was 1.5% by weight, and the existent ratio of boron was 0.6% by weight in the region of from a depth of 3 ⁇ m to 5 ⁇ m below the outermost surface.
  • the fiber had a slope constitution in which boron increased towards the surface.
  • the fiber had a tensile strength of 3.0 GPa.
  • the above immersion-drying-sintering were repeated eight times, to obtain a SiC/SiC composite material.
  • the SiC/SiC composite material was measured for a three-point bending strength at room temperature.
  • the three-point bending strength was 420 MPa. According to fracture observation, it was found that many fibers were pulled out.

Abstract

A silicon carbide fiber having a boron nitride layer in a fiber surface and having the following properties of a to c, a. the existent ratio of boron slopingly increases towards the surface of the fiber, b. the existent ratio of boron in the region of from the fiber surface to a depth of 500 nm is 0.5 to 1.5% by weight, c. the existent ratio of boron in a fiber central portion which is a region of a depth of at least 3 μm below the fiber surface is 0 to 0.2% by weight, and a process for the production thereof.

Description

  • This application is a continuation-in-part of now abandoned application Ser. No. 10/252,356, filed Sep. 24, 2002.
  • FIELD OF THE INVENTION
  • The present invention relates to a silicon carbide fiber having boron nitride having function as an interface for a ceramic-based composite material in a fiber surface, and a process for the production thereof. Specifically, it relates to a silicon carbide fiber which has a slope constitution in which the existent ratio of boron slopingly increases towards the surface of the fiber.
  • BACKGROUND OF THE INVENTION
  • Since ceramic-based composite materials obtainable by reinforcing ceramics with inorganic fibers have high toughness and high strength and are excellent in heat resistance, developments thereof are vigorously made. A SiC/SiC composite material obtainable by reinforcing a silicon carbide matrix with a silicon carbide fiber is one of the most promising materials in a high-temperature use.
  • It is widely known that characteristics of an interface between the fiber and the matrix are very important for controlling the mechanical properties of the SiC/SiC composite material. That is, a difference in the interfacial bonding strength of the fiber and the matrix exerts a great influence on the mechanical strength of the composite material. When the interfacial bonding of the fiber and the matrix is too large, cracks generated in the matrix easily spread into the fiber so that the material shows very brittle breakdown behavior and its strength and toughness become very low. On the other hand, when the interfacial bonding of the fiber and the matrix is appropriate, bridging or pull-out of the fiber occurs at the destruction of the material so that favorable strength and toughness are shown. For controlling the interfacial bonding strength of the fiber and the matrix, generally, an interface layer is formed on a fiber surface.
  • As an interface material, there are used carbon, boron nitride and the like. Of these interface materials, boron nitride is the most excellent in heat resistance and receives attention.
  • When boron nitride is used as an interface material for a ceramic-based composite material, it is required to form a boron nitride layer on a reinforcing fiber surface in some way.
  • Generally, for example, as shown in Ceramic Engineering Science Proceedings 16 (4) (1995), p 405-416, the formation of boron nitride layer is carried out by using boron trichloride or boron trifluoride and ammonia as a raw material gas according to a chemical vapor deposition method (CVD method) However, the CVD method requires a special CVD device and the raw material gas is expensive and dangerous, so that it is a very high-cost process.
  • Further, for example, as shown in Journal of American Ceramic Society vol. 77 No. 4, p 1,011-1,016, there has been used a method in which a fiber is immersed in a boric acid solution and then the fiber is sintered in an ammonia atmosphere to form a boron nitride layer on a fiber surface. However, in the solution immersion method like above, it is very difficult to form a boron nitride layer having a uniform thickness on the surface of each fiber of a fiber bundle. In most cases, there is caused bridging in which fibers are bonded to each other with boron nitride layers.
  • Further, M. D. Sacks et al. disclose a method for forming a boron nitride layer on a silicon carbide fiber surface in U.S. Pat. No. 6,040,008 and Ceramic Engineering and Science Proceedings Volume 21, Issue 4(2,000), p 275-281. In this method, a boron compound is added to a high molecular-weight polycarbosilane having a weight average molecular weight of 7,000 to 16,000, the mixture is dry-spun to form a spun fiber, the spun fiber is sintered in argon gas to introduce boron into a silicone carbide fiber homogeneously, and the resultant fiber is again sintered in a nitrogen-containing atmosphere, thereby forming a boron nitride layer on a silicon carbide fiber surface. However, in the case of the above method, it is very difficult to make the boron homogeneously dispersed in the silicon carbide fiber move to the fiber surface by heat treatment. Therefore, for forming a boron nitride layer having a sufficient thickness as an interface layer on the fiber surface, it is indispensable to increase the amount of boron to be introduced into the silicon carbide fiber. However, the oxidation resistance of the fiber becomes worse as the boron amount in the silicon carbide fiber increases. Further, according to the above document, the silicon carbide layer formed by the above method is arranged in a direction perpendicular to a fiber axis direction so that the boron nitride layer having such a structure can not be expected to exert a big effect as an interface layer for a ceramic-based composite material.
  • SUMMARY OF THE INVENTION
  • It is an object of the present invention to provide a silicon carbide fiber having a boron nitride layer, which is useful as a reinforcing fiber for a ceramic-based composite material, in a fiber surface and a process for the production thereof.
  • It is another object of the present invention to provide a silicon carbide fiber having a slope constitution in which boron increases towards a surface layer and a structure in which boron exists in a fiber surface and in a fiber central portion in specific ratios respectively, and a process for the production thereof.
  • According to the present invention, there is provided a silicon carbide fiber having a boron nitride layer in a fiber surface and having the following properties of a to c,
      • a. the existent ratio of boron slopingly increases towards the surface of the fiber,
      • b. the existent ratio of boron in the region of from the fiber surface to a depth of 500 nm is 0.5 to 1.5% by weight,
      • c. the existent ratio of boron in a fiber central portion which is a region of a depth of at least 3 μm below the fiber surface is 0 to 0.2% by weight.
  • According to the present invention, there is provided a silicon carbide fiber according to the above, which is formed of a composite phase comprising a silicon carbide phase and a boron nitride phase.
  • According to the present invention, there is provided a process for the production of a silicon carbide fiber recited above, which process comprises
      • melt-spinning a modified polycarbosilane obtainable by modifying a polycarbosilane having a main chain structure represented by the formula,
        Figure US20050031866A1-20050210-C00001

        (in which R is a hydrogen atom, a lower alkyl group or a phenyl group) and a number average molecular weight of 200 to 7,000, with an organic boron compound or melt-spinning a mixture of the modified polycarbosilane and an organic boron compound, to obtain a spun fiber;
      • infusibilizing the spun fiber; and
      • sintering the infusible fiber in a nitrogen-containing atmosphere.
    BRIEF DESCRIPTION OF DRAWINGS
  • FIG. 1 is a diagram showing the result of analysis of a boron concentration change from the surface of a precursor fiber to the inside thereof by Auger electron spectroscopy in Example 1.
  • FIG. 2 is an illustration which schematically shows steps of the generation of a silicon carbide fiber having a boron nitride layer in a fiber surface, provided by the present invention.
  • DETAILED DESCRIPTION OF THE INVENTION
  • The present invention relates to a silicon carbide fiber which has, in a fiber surface, a boron nitride layer useful as a reinforcing fiber for a ceramic-based composite material and to a process for the production thereof. The silicon carbide fiber of the present invention has a central portion (silicon carbide phase) covering mechanical properties and a boron nitride phase covering interface function in a surface layer and near the surface layer, further has a slope constitution in which boron increases towards the surface layer and has a structure in which boron exists in the fiber surface and in the central portion in specific ratios respectively. Further, it is presumed that the silicon carbide fiber of the present invention has a fiber structure in which the boron nitride layer has a layered structure which is parallel to the fiber surface. Accordingly, there can be obtained a fiber having an interface function excellent in oxidation resistance. In the present invention, dislike the above method of Sack et al., a surface layer having a high boron concentration is formed at a precursor step, as shown in FIG. 1, and it is reacted with a nitrogen-containing substance (e.g., nitrogen or ammonia) which is homogeneously diffused from the fiber surface. It is estimated that a boron nitride layered structure, which is parallel to the fiber surface, is formed as a result.
  • In the silicon carbide fiber having a boron nitride layer in the fiber surface, the silicon carbide phase may be amorphous or crystalline.
  • That is, the present invention concerns a silicon carbide fiber formed of a composite phase comprising a silicon carbide layer (first phase) and a boron nitride phase (second phase), which fiber is characterized in that the existent ratio of boron slopingly increases towards the surface layer of the fiber.
  • The silicon carbide phase (first phase) forms an inside phase of the fiber obtained by the present invention and it plays an important role in covering mechanical properties. The existent ratio of the first phase based on the fiber as a whole is preferably 97% by weight or higher. It is preferred to control the existent ratio of the first phase in the range of from 98 to 99% by weight for exerting the intended functions of the second phase sufficiently and exerting high mechanical properties concurrently.
  • On the other hand, the boron nitride which constitutes the second phase plays an important role in exerting the intended function in the present invention. It may be amorphous or crystalline. Further, the second phase may include boron carbide. The existent ratio of the second phase which constitutes a surface layer portion of the fiber is preferably 0.5 to 3.5% by weight (boron content 0.2 to 1.5% by weight). It is preferred to control the existent ratio of the second phase in the range of from 0.7 to 2.0% by weight (boron content 0.3 to 0.9% by weight) for exerting its functions sufficiently and exerting high strength concurrently.
  • The existent ratio of boron in the second phase slopingly increases towards the fiber surface. The thickness of a region where the slope in the constitution is apparently recognized is preferably controlled in the range of 5 to 500 nm. The above “existent ratio” of the second phase refers to a ratio contained in the fiber as a whole. Since the existent ratio of boron in the region of from the fiber surface to a depth of 500 nm is 0.5 to 1.5% by weight and the existent ratio of boron in the central portion which is a region of a depth of at least 3 μm below the fiber surface is 0 to 0.2 or less % by weight, the silicon carbide fiber has an advantage that the fiber maintains excellent oxidation resistance and also shows a function as an interface. When the amount of boron in the fiber surface is smaller than the above range, the function as an interface is insufficient. When the amount of boron in the central portion is larger than the above range, the fiber is insufficient in oxidation resistance.
  • The process for the production of the silicon carbide fiber having boron nitride in a fiber surface, provided by the present invention, will be explained hereinafter.
  • In the present invention, mainly, a modified polycarbosilane obtainable by modifying a polycarbosilane which has a main chain structure represented by the formula,
    Figure US20050031866A1-20050210-C00002

    (in which R is a hydrogen atom, a lower alkyl group or a phenyl group) and a number average molecular weight of 200 to 10,000, with an organic boron compound is melt-spun or a mixture of the modified polycarbosilane and an organic boron compound is melt-spun, to obtain a spun fiber; the spun fiber is infusibilized; and then the infusible fiber is sintered in a nitrogen-containing atmosphere, whereby the silicon carbide fiber having boron nitride in a fiber surface can be produced.
  • The first step of the present invention's process is a step of producing a modified polycarbosilane having a number average molecular weight of 1,000 to 50,000 as a starting material used for producing the silicon carbide fiber having boron nitride in a fiber surface. The fundamental production process of the above modified polycarbosilane is remarkably similar to the production process of JP-A-56-74126. However, in the present invention, it is required to carefully control the bonding state of a functional group described in JP-A-56-74126. The general outlines thereof will be explained hereinafter.
  • The modified polycarbosilane as a starting material is derived mainly from a polycarbosilane having a main chain structure represented by the formula,
    Figure US20050031866A1-20050210-C00003

    (in which R is a hydrogen atom, a lower alkyl group or a phenyl group) and a number average molecular weight of 200 to 10,000 and an organic boron compound having a basic structure of the formula B(OR′)n or the formula BR″m (in which R′ is an alkyl group having 1 to 20 carbon atoms or a phenyl group, R″ is acetyl acetonate, and each of m and n is an integer of more than 1).
  • In the present invention, there may be used, as the above polycarbosilane, a polycarbosilane in which at least parts of silicon atoms are bonded to metal elements such as Ti, Zr, Hf, Al, V, Mg or Y directly or through oxygen atoms.
  • For producing the fiber having a slope constitution, provided by the present invention, it is required to select slow reaction conditions under which only part of the organic boron compound forms a bond with the polycarbosilane. For the above purpose, it is required to carry out the reaction at a temperature of 280° C. or lower, preferably 250° C. or lower, in an inert gas. Under the above reaction conditions, even when the above organic boron compound is reacted with the polycarbosilane, it bonds as a monofunctional polymer (i.e., a pendant-like bonding) and no large increase in molecular weight occurs. The thus-obtained modified polycarbosilane in which the organic boron compound is partially bonded plays an important role in improving the compatibility between the polycarbosilane and the organic boron compound.
  • When two or more functional groups are bonded, the polycarbosilane forms a cross-linking structure and a noticeable increase in molecular weight is observed. In this case, sudden heat generation and an increase in melt viscosity occur during the reaction. On the other hand, when only one functional group is reacted as described above and an unreacted organic boron compound remains, conversely, a decrease in melt viscosity is observed.
  • In the present invention, it is preferred to select conditions under which an unreacted organic boron compound is intentionally left. The present invention uses mainly, as a starting material, a material in which the above modified polycarbosilane coexists with an organic boron compound which is in an unreacted state or an organic boron compound which is dimer, trimer or so. However, the modified polycarbosilane alone can be similarly used as a starting material when the modified polycarbosilane contains a modified polycarbosilane component having an extremely low molecular weight.
  • In the second step of the present invention's process, the modified polycarbosilane obtained in the first step or a mixture of the modified polycarbosilane and a low molecular-weight organic boron compound is molten to form a spinning solution, optionally the spinning solution is filtered to remove substances which are to be detriment at the time of spinning such as a microgel or impurities, and the spinning solution is spun with a generally used synthetic fiber-spinning machine. While the temperature of the spinning solution at the spinning time differs depending upon the softening temperature of the modified polycarbosilane as raw materials, it is advantageous to select a temperature in the range of from 50 to 200° C. The above spinning machine may be equipped with a humidifying and heating cylinder in a nozzle bottom portion as required. The diameter of a fiber is adjusted by changing the amount of ejection from a nozzle and the take-up speed of a high-speed take-up unit attached to a bottom portion of the spinning machine.
  • In addition to the above-described melt spinning, the second step of the present invention's process can give an intended fiber by dissolving the modified polycarbosilane obtained in the first step or a mixture of the modified polycarbosilane and low molecular-weight organic boron compound in, for example, benzene, toluene, xylene or a solvent which can dissolve the modified polycarbosilane and the low molecular-weight organic boron compound, to form a spinning solution, optionally filtering the spinning solution to remove substances which are to be detriment at the time of spinning such as a macrogel or impurities, and spinning the spinning solution with a generally used synthetic fiber-spinning machine by a dry spinning method while controlling the take-up speed.
  • In these spinning steps, a spinning cylinder may be attached to the spinning machine as required. An atmosphere in the cylinder is changed to a mix atmosphere mixed with at least one gas selected from the above solvents or replaced with an atmosphere of air, an inert gas, heated air, a heated inert gas, steam, an ammonia gas, a hydrocarbon gas or an organosilicon compound gas, whereby solidification of a fiber in the spinning cylinder can be controlled.
  • Next, in the third step of the present invention's process, the above spun fiber is preliminarily heated in an oxidizing atmosphere under the action of tension or no tension, to infusibilize the spun fiber. The purpose of this step is to prevent the fiber from melting in the following sintering step and to prevent adjacent fibers from bonding to each other. The temperature for the treatment and the time for the treatment differ depending upon the constitution. Although not specially limited, generally, the treatment is carried out in the range of 50 to 400° C. for several hours to 30 hours. The above oxidizing atmosphere may contain moisture, nitrogen oxide, ozone, etc., which increase the oxidation strength of the spun fiber, and an oxygen partial pressure may be changed intentionally.
  • In some cases, the softening temperature of the spun fiber becomes less than 50° C. according to the ratio of substances having a low molecular weight contained in the raw materials. In these cases, a treatment for promoting the oxidation of a fiber surface is previously carried out at a temperature lower than the above treatment temperature in some cases. In the third step and the second step, there is advanced bleedout of the low-molecular weight compound, contained in the raw materials, to the fiber surface. It is considered that the ground of the intended slope constitution is accordingly formed.
  • In the next fourth step of the present invention's process, the above infusible fiber is sintered under tension or no tension at a temperature in the range of 500 to 2,000° C. in a nitrogen-containing atmosphere, to obtain the intended silicon carbide fiber formed of a composite phase comprising a silicon carbide phase (first phase) and a boron nitride phase (second phase), in which the existent ratio of boron slopingly increases towards the surface layer.
  • FIG. 2 schematically shows steps of the generation of the silicon carbide fiber having the intended slope constitution, provided by the present invention.
  • Examples
  • The present invention will be explained with reference to Examples hereinafter.
  • Referential Example 1
  • 2.5 liters of anhydrous toluene and 400 g of metallic sodium were placed in a three-necked flask having a volume of 5 liters, the mixture was heated to the boiling point of toluene under a flow of nitrogen gas, and 1 liter of dimethyldichlorosilane was dropwise added over 1 hour. After the completion of the addition, the mixture was refluxed under heat for 10 hours to obtain a precipitate. The precipitate was recovered by filtration, and washed with methanol and then with water to give 420 g of a white powder polydimethylsilane.
  • 250 g of the polydimethylsilane was placed in a three-necked flask equipped with a water-cooling refluxing device, and allowed to react under heat at 420° C. for 30 hours under a nitrogen flow, to obtain a polycarbosilane having a number average molecular weight of 1,200.
  • Example 1
  • 100 g of toluene and 100 g of tributyl borate were added to 100 g of polycarbosilane synthesized according to Referential Example 1, the mixture was preliminarily heated at 100° C. for 1 hour, then the mixture was slowly temperature-increased up to 150° C. to distill the toluene off, the resultant mixture was allowed to react at the above temperature for 5 hours, and then the reaction mixture was further temperature-increased up to 250° C. and allowed to react at this temperature for 5 hours, to obtain a modified polycarbosilane. 10 g of tributyl borate was added to the modified polycarbosilane for the purpose of intentionally making a low-molecular weight organic boron compound coexist, to obtain a mixture of the modified polycarbosilane and the low-molecular weight organic boron compound.
  • The mixture of the modified polycarbosilane and the low-molecular weight organic boron compound was dissolved in toluene, the resultant solution was placed in a spinning machine made of glass, it was temperature-increased in the spinning machine in which nitrogen had been sufficiently substituted to distill the toluene off and the resultant material was melt-spun at 180° C.
  • The spun fiber was stepwise heated up to 150° C. in air to form an infusible fiber, and the infusible fiber was sintered in nitrogen at 1,500° C. for 1 hour, to obtain a silicon carbide fiber having a boron nitride layer in a fiber surface.
  • As a result of TEM observation of the obtained silicon carbide fiber (average diameter: 10 μm), it was confirmed that the boron nitride layer having a layered structure which was parallel to the fiber surface was formed in the fiber surface. The inside silicon carbide phase was amorphous. Further, as a result of elemental analysis, the boron content in the fiber was 0.5% by weight. Further, the fiber was examined for the distribution state of constitutive atoms by Auger. The molar ratio of B/Si was 0.85 in the region of from the outermost surface to a depth of 50 nm, the molar ratio of B/Si was 0.20 in the region of from a depth of 100 nm to 200 nm below the outermost surface, and the molar ratio of B/Si in the central portion was 0. Accordingly, it was confirmed that the fiber had a slope constitution in which boron increased towards the surface. The fiber had a tensile strength of 3.0 GPa. The fiber was heat-treated in air at 1,000° C. for 100 hours and then it was measured for a tensile strength at room temperature. In this case, the fiber after the heat treatment retained at least 90% of the tensile strength shown before the heat treatment. Further, the fiber was molded into a three-dimensional fabric having a fiber ratio of X:Y:Z=1:1:0.1, the fabric was immersed in polytitanocarbosilane (50% xylene solution), the fabric was dried and then the dried fabric was sintered in nitrogen at 1,200° C. for 1 hour. In order to densify the above material, the above immersion-drying-sintering were repeated eight times, to obtain a SiC/SiC composite material. The SiC/SiC composite material was measured for a three-point bending strength at room temperature. The three-point bending strength was 450 MPa. According to fracture observation, it was foundthatmany fibers were pulled out.
  • Example 2
  • 10 g of aluminum acetylacetonate was added to a toluene solution in which 100 g of polycarbosilane synthesized according to Referential Example 1 was dissolved, and the mixture was allowed to react in a crosslinking reaction at 320° C. under a nitrogen gas flow, to obtain a polyaluminocarbosilane having a number average molecular weight of 2,000.
  • 100 g of toluene and 100 g of tributyl borate were added to 100 g of the obtained polyaluminocarbosilane, the mixture was preliminarily heated at 100° C. for 1 hour, then the mixture was slowly temperature-increased up to 150° C. to distill the toluene off, the resultant mixture was allowed to react at the above temperature for 5 hours, and then the reaction mixture was further temperature-increased up to 250° C. and allowed to react at this temperature for 5 hours, to obtain a modified polycarbosilane. 10 g of tributyl borate was added to the modified polycarbosilane for the purpose of intentionally making a low-molecular weight organic boron compound coexist, to obtain a mixture of the modified polycarbosilane and the low-molecular weight organic boron compound.
  • The mixture of the modified polycarbosilane and the low-molecular weight organic boron compound was dissolved in toluene, the resultant solution was placed in a spinning machine made of glass, it was temperature-increased in the spinning machine in which nitrogen had been sufficiently substituted to distill the toluene off and the resultant material was melt-spun at 180° C.
  • The spun fiber was stepwise heated up to 150° C. in air to form an infusible fiber, and the infusible fiber was sintered in nitrogen at 1,900° C. for 1 hour, to obtain a silicon carbide fiber having a boron nitride layer in a fiber surface.
  • As a result of TEM observation of the obtained silicon carbide fiber (average diameter: 10 μm), it was confirmed that boron nitride layers were formed in the fiber surface. The inside silicon carbide phase was crystalline. Further, as a result of elemental analysis, the boron content in the fiber was 0.5% by weight. Further, the fiber was examined for the distribution state of constitutive atoms by Auger. The molar ratio of B/Si was 0.85 in the region of from the outermost surface to a depth of 50 nm, the molar ratio of B/Si was 0.16 in the region of from a depth of 100 nm to 200 nm below the outermost surface, and the molar ratio of B/Si in the central portion was 0. Accordingly, it was confirmed that the fiber had a slope constitution in which boron increased towards the surface. The fiber had a tensile strength of 2.8 GPa. The fiber was heat-treated in air at 1,000° C. for 100 hours and then it was measured for a tensile strength at room temperature. In this case, the fiber after the heat treatment retained at least 90% of the above strength shown before the heat treatment. Further, the fiber was molded into a three-dimensional fabric having a fiber ratio of X:Y:Z=1:1:0.1, the fabric was immersed in polytitanocarbosilane (50% xylene solution), the fabric was dried and then the dried fabric was sintered in nitrogen at 1,200° C. for 1 hour. In order to densify the above material, the above immersion-drying-sintering were repeated eight times, to obtain a SiC/SiC composite material. The SiC/SiC composite material was measured for a three-point bending strength at room temperature. The three-point bending strength was 400 MPa. According to fracture observation, it was found that many fibers were pulled out.
  • Comparative Example 1
  • A silicon carbide fiber having a boron nitride layer in a fiber surface was synthesized according to the method described in U.S. Pat. No. 6,040,008. As a result of TEM observation of the obtained silicon carbide fiber (average diameter: 10 μm), it was confirmed that boron nitride layers formed in the fiber surface were arranged in a direction perpendicular to a fiber axis direction. The inside silicon carbide phase was crystalline. Further, as a result of elemental analysis, the boron content in the fiber was 2% by weight. Further, the fiber was examined for the distribution state of constitutive atoms by Auger. The molar ratio of B/Si was 0.85 in the region of from the outermost surface to a depth of 50 nm, the molar ratio of B/Si was 0.25 in the region of from a depth of 100 nm to 200 nm below the outermost surface, and the molar ratio of B/Si in the central portion was 0.1. The fiber had a slope constitution in which boron increased towards the surface, while the existence of boron was confirmed even in the inside of the fiber. The fiber had a tensile strength of 2.8 GPa. The fiber was heat-treated in air at 1,000° C. for 100 hours and then it was measured for a tensile strength at room temperature. In this case, the tensile strength of the fiber was decreased to 70% or lower based on the tensile strength shown before the heat treatment. Further, the fiber was molded into a three-dimensional fabric having a fiber ratio of X:Y:Z=1:1:0.1, the fabric was immersed in polytitanocarbosilane (50% xylene solution), the fabric was dried and then the dried fabric was sintered in nitrogen at 1,200° C. for 1 hour. In order to densify the above material, the above immersion-drying-sintering were repeated eight times, to obtain a SiC/SiC composite material. The SiC/SiC composite material was measured for a three-point bending strength at room temperature. The three-point bending strength was 100 MPa, and brittle breakdown behavior was observed. According to fracture observation, it was found that no fiber was pulled out.
  • Example 3
  • 100 g of toluene and 100 g of tributyl borate were added to 100 g of polycarbosilane synthesized according to Referential Example 1, the mixture was preliminarily heated at 100° C. for 1 hour, then the mixture was slowly temperature-increased up to 150° C. to distill the toluene off, the resultant mixture was allowed to react at the above temperature for 5 hours, and then the reaction mixture was further temperature-increased up to 250° C. and allowed to react at this temperature for 5 hours, to obtain a modified polycarbosilane. 15 g of tributyl borate was added to the modified polycarbosilane for the purpose of intentionally making a low-molecular weight organic metal compound coexist, to obtain a mixture of the modified polycarbosilane and the low-molecular weight organic metal compound.
  • The mixture of the modified polycarbosilane and the low-molecular weight organic metal compound was dissolved in toluene, the resultant solution was placed in a spinning machine made of glass, it was temperature-increased in the spinning machine in which nitrogen had been sufficiently substituted to distill the toluene off and the resultant material was melt-spun at 180° C.
  • The spun fiber was stepwise heated up to 150° C. in air to form an infusible fiber, and the infusible fiber was sintered in nitrogen at 1,500° C. for 1 hour, to obtain an inorganic fiber having a boron nitride layer in a fiber surface.
  • As a result of TEM observation of the obtained inorganic fiber (average diameter: 10 μm), it was confirmed that a boron nitride layer was formed in the fiber surface. The inside silicon carbide phase was amorphous. Further, as a result of elemental analysis, the boron content in the fiber was 0.5% by weight. Further, the fiber was examined for the distribution state of constitutive atoms by Auger. The existent ratio of boron in the region of from the outermost surface to a depth of 500 nm was 1.2% by weight, and the existent ratio of boron was 0.1% by weight in the region of from a depth of 3 μm to 5 μm below the outermost surface. Accordingly, it was confirmed that the fiber had a slope constitution in which boron increased towards the surface. The fiber had a tensile strength of 3.0 GPa. The fiber was heat-treated in air at 1,000° C. for 100 hours and then it was measured for a tensile strength at room temperature. In this case, the fiber after the heat treatment retained at least 90% of the above strength shown before the heat treatment. Further, the fiber was molded into a three-dimensional fabric having a fiber ratio of X:Y:Z=1:1:0.1, the fabric was immersed in polytitanocarbosilane (50% xylene solution), the fabric was dried and then the dried fabric was sintered in nitrogen at 1,200° C. for 1 hour. In order to densify the above material, the above immersion-drying-sintering were repeated eight times, to obtain a SiC/SiC composite material. The SiC/SiC composite material was measured for a three-point bending strength at room temperature. The three-point bending strength was 460 MPa. According to fracture observation, it was found that many fibers were pulled out.
  • Comparative Example 2
  • 100 g of toluene and 100 g of tributyl borate were added to 100 g of polycarbosilane synthesized according to Referential Example 1, the mixture was preliminarily heated at 100° C. for 1 hour, then the mixture was slowly temperature-increased up to 150° C. to distill the toluene off, the resultant mixture was allowed to react at the above temperature for 5 hours, and then the reaction mixture was further temperature-increased up to 250° C. and allowed to react at this temperature for 5 hours, to obtain a modified polycarbosilane. 3 g of tributyl borate was added to the modified polycarbosilane for the purpose of intentionally making a low-molecular weight organic metal compound coexist, to obtain a mixture of the modified polycarbosilane and the low-molecular weight organic metal compound.
  • The mixture of the modified polycarbosilane and the low-molecular weight organic metal compound was dissolved in toluene, the resultant solution was placed in a spinning machine made of glass, it was temperature-increased in the spinning machine in which nitrogen had been sufficiently substituted to distill the toluene off and the resultant material was melt-spun at 180° C.
  • The spun fiber was stepwise heated up to 150° C. in air to form an infusible fiber, and the infusible fiber was sintered in nitrogen at 1,500° C. for 1 hour, to obtain an inorganic fiber having a boron nitride layer in a fiber surface.
  • As a result of TEM observation of the obtained inorganic fiber (average diameter: 10 μm), it was confirmed that a boron nitride layer was slightly formed in the fiber surface. The inside silicon carbide phase was amorphous. Further, as a result of elemental analysis, the boron content in the fiber was 0.3% by weight. Further, the fiber was examined for the distribution state of constitutive atoms by Auger. The existent ratio of boron in the region of from the outermost surface to a depth of 500 nm was 0.3% by weight, and the existent ratio of boron was 0.1% by weight in the region of from a depth of 3 μm to 5 μm below the outermost surface. Accordingly, it was confirmed that the fiber had a slope constitution in which boron increased towards the surface. The fiber had a tensile strength of 3.0 GPa. The fiber was heat-treated in air at 1,000° C. for 100 hours and then it was measured for a tensile strength at room temperature. In this case, the fiber after the heat treatment retained at least 90% of the above strength shown before the heat treatment. Further, the fiber was molded into a three-dimensional fabric having a fiber ratio of X:Y:Z=1:1:0.1, the fabric was immersed in polytitanocarbosilane (50% xylene solution), the fabric was dried and then the dried fabric was sintered in nitrogen at 1,200° C. for 1 hour. In order to densify the above material, the above immersion-drying-sintering were repeated eight times, to obtain a SiC/SiC composite material. The SiC/SiC composite material was measured for a three-point bending strength at room temperature. The three-point bending strength was 100 Mpa or lower, and brittle breakdown behavior was observed. According to fracture observation, it was found that almost no fiber was pulled out.
  • Comparative Example 3
  • 100 g of toluene and 100 g of tributyl borate were added to 100 g of polycarbosilane synthesized according to Referential Example 1, the mixture was preliminarily heated at 100° C. for 1 hour, then the mixture was slowly temperature-increased up to 150° C. to distill the toluene off, the resultant mixture was allowed to react at the above temperature for 5 hours, and then the reaction mixture was further temperature-increased up to 250° C. and allowed to react at this temperature for 5 hours, to obtain a modified polycarbosilane. 50 g of tributyl borate was added to the modified polycarbosilane for the purpose of intentionally making a low-molecular weight organic metal compound coexist, to obtain a mixture of the modified polycarbosilane and the low-molecular weight organic metal compound.
  • The mixture of the modified polycarbosilane and the low-molecular weight organic metal compound was dissolved in toluene, the resultant solution was placed in a spinning machine made of glass, it was temperature-increased in the spinning machine in which nitrogen had been sufficiently substituted to distill the toluene off and the resultant material was melt-spun at 160° C.
  • The spun fiber was stepwise heated up to 150° C. in air to form an infusible fiber, and the infusible fiber was sintered in nitrogen at 1,500° C. for 1 hour, to obtain an inorganic fiber having a boron nitride layer in a fiber surface.
  • As a result of TEM observation of the obtained inorganic fiber (average diameter: 10 μm), it was confirmed that a boron nitride layer was formed in the fiber surface. The inside silicon carbide phase was amorphous. Further, as a result of elemental analysis, the boron content in the fiber was 0.8% by weight. Further, the fiber was examined for the distribution state of constitutive atoms by Auger. The existent ratio of boron in the region of from the outermost surface to a depth of 500 nm was 1.5% by weight, and the existent ratio of boron was 0.6% by weight in the region of from a depth of 3 μm to 5 μm below the outermost surface. Accordingly, it was confirmed that the fiber had a slope constitution in which boron increased towards the surface. The fiber had a tensile strength of 3.0 GPa. The fiber was heat-treated in air at 1,000° C. for 100 hours and then it was measured for a tensile strength at room temperature. In this case, the tensile strength of the fiber was decreased to 70% or lower based on the tensile strength shown before the heat treatment. Further, the fiber was molded into a three-dimensional fabric having a fiber ratio of X:Y:Z=1:1:0.1, the fabric was immersed in polytitanocarbosilane (50% xylene solution), the fabric was dried and then the dried fabric was sintered in nitrogen at 1,200° C. for 1 hour. In order to densify the above material, the above immersion-drying-sintering were repeated eight times, to obtain a SiC/SiC composite material. The SiC/SiC composite material was measured for a three-point bending strength at room temperature. The three-point bending strength was 420 MPa. According to fracture observation, it was found that many fibers were pulled out.

Claims (9)

1. A silicon carbide fiber having a boron nitride layer in a fiber surface and having the following properties of a to c,
a. the existent ratio of boron slopingly increases towards the surface of the fiber,
b. the existent ratio of boron in the region of from the fiber surface to a depth of 500 nm is 0.5 to 1.5% by weight,
c. the existent ratio of boron in a fiber central portion which is a region of a depth of at least 3 μm below the fiber surface is 0 to 0.2% by weight.
2. A silicon carbide fiber according to claim 1, wherein the existent ratio of boron is 0.2 to 1.5% by weight based on the fiber as a whole.
3. A silicon carbide fiber according to claim 1, which is formed of a composite phase comprising a silicon carbide phase and a boron nitride phase.
4. A silicon carbide fiber according to claim 3, wherein the amount of the silicon carbide phase is 97% by weight or more based on the fiber as a whole.
5. A silicon carbide fiber according to claim 1, wherein a layer in which the existent ratio of the boron slopingly increases exists in the range of from 5 to 500 nm below the surface of the fiber.
6. A process for the production of a silicon carbide fiber recited in claim 1, which process comprises
melt-spinning a modified polycarbosilane obtainable by modifying a polycarbosilane having a main chain structure represented by the formula,
Figure US20050031866A1-20050210-C00004
(in which R is a hydrogen atom, a lower alkyl group or a phenyl group) and a number average molecular weight of 200 to 7,000, with an organic boron compound or melt-spinning a mixture of the modified polycarbosilane and an organic boron compound, to obtain a spun fiber;
infusibilizing the spun fiber; and
sintering the infusible fiber in a nitrogen-containing atmosphere.
7. A process according to claim 6, wherein the organic boron compound is a compound having a basic structure of the formula B (OR′) n or the formula BR″m, in which R′ is an alkyl group having 1 to 20 carbon atoms or a phenyl group, R″ is acetyl acetonate, and each of m and n is an integer of more than 1.
8. A process according to claim 6, wherein at least part of silicon atoms of the polycarbosilane bond to metal atoms selected from the group consisting of Ti, Zr, Hf, Al, V, Mg and Y directly or through oxygen atoms.
9. A process according to claim 6, wherein the organic boron compound bonds to the polycarbosilane as a mono functional polymer.
US10/751,450 2001-10-03 2004-01-06 Silicon carbide fiber having boron nitride layer in fiber surface and process for the production thereof Abandoned US20050031866A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US10/751,450 US20050031866A1 (en) 2001-10-03 2004-01-06 Silicon carbide fiber having boron nitride layer in fiber surface and process for the production thereof
US10/981,525 US7005184B2 (en) 2001-10-03 2004-11-05 Silicon carbide fiber having boron nitride layer in fiber surface and process for the production thereof

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2001307112A JP2003113537A (en) 2001-10-03 2001-10-03 Silicon carbide fiber having boron nitride layer on fiber surface and method for producing the same
JP307112/01 2001-10-03
US10/252,356 US20030064220A1 (en) 2001-10-03 2002-09-24 Silicon carbide fiber having boron nitride layer in fiber surface and process for the production thereof
US10/751,450 US20050031866A1 (en) 2001-10-03 2004-01-06 Silicon carbide fiber having boron nitride layer in fiber surface and process for the production thereof

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US10/252,356 Continuation-In-Part US20030064220A1 (en) 2001-10-03 2002-09-24 Silicon carbide fiber having boron nitride layer in fiber surface and process for the production thereof

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US10/981,525 Continuation-In-Part US7005184B2 (en) 2001-10-03 2004-11-05 Silicon carbide fiber having boron nitride layer in fiber surface and process for the production thereof

Publications (1)

Publication Number Publication Date
US20050031866A1 true US20050031866A1 (en) 2005-02-10

Family

ID=34117811

Family Applications (1)

Application Number Title Priority Date Filing Date
US10/751,450 Abandoned US20050031866A1 (en) 2001-10-03 2004-01-06 Silicon carbide fiber having boron nitride layer in fiber surface and process for the production thereof

Country Status (1)

Country Link
US (1) US20050031866A1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070150060A1 (en) * 2005-12-27 2007-06-28 Sdgi Holdings, Inc Rehydration and restoration of intervertebral discs with polyelectrolytes
CN103614858A (en) * 2013-11-21 2014-03-05 苏州中宝复合材料有限公司 Micron silicon-carbide fibrofelt and production method thereof
CN109797460A (en) * 2019-01-28 2019-05-24 江西嘉捷信达新材料科技有限公司 Preparation method under the SiC fiber of boron containing aluminium and its supercritical fluid
CN109912803A (en) * 2019-03-19 2019-06-21 江西嘉捷信达新材料科技有限公司 One kind Polycarbosilane containing zirconium and its preparation method and application
EP3835466A4 (en) * 2018-08-06 2022-05-04 Ube Industries, Ltd. Crystalline silicon carbide fiber and method for manufacturing same, and ceramic composite substrate

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2003A (en) * 1841-03-12 Improvement in horizontal windivhlls
US4642271A (en) * 1985-02-11 1987-02-10 The United States Of America As Represented By The Secretary Of The Navy BN coating of ceramic fibers for ceramic fiber composites
US5792416A (en) * 1996-05-17 1998-08-11 University Of Florida Preparation of boron-doped silicon carbide fibers
US6040008A (en) * 1997-08-04 2000-03-21 University Of Florida Silicon carbide fibers with boron nitride coatings
US6069102A (en) * 1997-08-04 2000-05-30 University Of Florida Creep-resistant, high-strength silicon carbide fibers

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2003A (en) * 1841-03-12 Improvement in horizontal windivhlls
US4642271A (en) * 1985-02-11 1987-02-10 The United States Of America As Represented By The Secretary Of The Navy BN coating of ceramic fibers for ceramic fiber composites
US5792416A (en) * 1996-05-17 1998-08-11 University Of Florida Preparation of boron-doped silicon carbide fibers
US6040008A (en) * 1997-08-04 2000-03-21 University Of Florida Silicon carbide fibers with boron nitride coatings
US6069102A (en) * 1997-08-04 2000-05-30 University Of Florida Creep-resistant, high-strength silicon carbide fibers
US6187705B1 (en) * 1997-08-04 2001-02-13 Michael D. Sacks Creep-resistant, high-strength silicon carbide fibers
US6203904B1 (en) * 1997-08-04 2001-03-20 Michael D. Sacks Silicon carbide fibers with boron nitride coatings

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070150060A1 (en) * 2005-12-27 2007-06-28 Sdgi Holdings, Inc Rehydration and restoration of intervertebral discs with polyelectrolytes
CN103614858A (en) * 2013-11-21 2014-03-05 苏州中宝复合材料有限公司 Micron silicon-carbide fibrofelt and production method thereof
EP3835466A4 (en) * 2018-08-06 2022-05-04 Ube Industries, Ltd. Crystalline silicon carbide fiber and method for manufacturing same, and ceramic composite substrate
CN109797460A (en) * 2019-01-28 2019-05-24 江西嘉捷信达新材料科技有限公司 Preparation method under the SiC fiber of boron containing aluminium and its supercritical fluid
CN109912803A (en) * 2019-03-19 2019-06-21 江西嘉捷信达新材料科技有限公司 One kind Polycarbosilane containing zirconium and its preparation method and application

Similar Documents

Publication Publication Date Title
US6040008A (en) Silicon carbide fibers with boron nitride coatings
US5792416A (en) Preparation of boron-doped silicon carbide fibers
Viard et al. Polymer-derived ceramics route toward SiCN and SiBCN fibers: From chemistry of polycarbosilazanes to the design and characterization of ceramic fibers
CN110629324B (en) Boron-containing silicon carbide fiber and preparation method thereof
EP0162596A1 (en) Inorganic fiber-reinforced ceramic composite material
EP1300491B1 (en) Process for the production of a silicon carbide fiber having boron nitride layer in fiber surface
US20050031866A1 (en) Silicon carbide fiber having boron nitride layer in fiber surface and process for the production thereof
US5945362A (en) Silicon carbide fiber having excellent alkali durability
US7005184B2 (en) Silicon carbide fiber having boron nitride layer in fiber surface and process for the production thereof
Yilmaz et al. Silicon carbide fiber manufacturing: Cost and technology
US6069102A (en) Creep-resistant, high-strength silicon carbide fibers
US6582650B1 (en) Organic silicon polymer, inorganic fiber with silicon carbide base, and method of manufacture thereof
US5948714A (en) Silicon-carbide-based inorganic fiber
EP1164212B1 (en) Silica-group composite oxide fiber and process for the production thereof
JP3279134B2 (en) High heat resistant ceramic fiber and method for producing the same
JP3767170B2 (en) Sintered SiC fiber bonded body and manufacturing method thereof
JP3279144B2 (en) High heat resistant ceramic fiber and method for producing the same
JP3417459B2 (en) Crystalline silicon carbide fiber having good alkali resistance and method for producing the same
JP2007031186A (en) Fibrous composite and method of manufacturing the same
Motz et al. Processing, structure and properties of ceramic fibers
JP3381589B2 (en) Crystalline silicon carbide fiber and method for producing the same
JP3279126B2 (en) Inorganic fiber and method for producing the same
JPH11171658A (en) Crystalline silicon carbide-based fiber-reinforced ceramic composite material
JP3381575B2 (en) Nonwoven fabric or woven fabric of crystalline silicon carbide fiber and method for producing the same
JPH0426562A (en) Fiber reinforced ceramic composite material

Legal Events

Date Code Title Description
STCB Information on status: application discontinuation

Free format text: EXPRESSLY ABANDONED -- DURING EXAMINATION